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Welcome!
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This course

Two sections

Part I: Introduction to Panel data and Nonparametric econo-
metrics (10h)

Part II 2: DAGs, causality, etc. (10h, Prof: Aleix Ruiz de Villa)

From now on, we will focus on Part I: Introduction to Panel
data and Nonparametric econometrics.
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Today’s Goal

1. Description of the overall logistics of the course.

2. 9 Questions to review basic econometrics

3. Motivation and Overview.

4. The course itself: Introduction to panel data.
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1. About logistics

This course will review to main topics

Estimation of panel data models

Introduction to non-parametric and semiparemetric

Both are very broad topics in econometrics: this course will be
a short introduction, focused on explaining the main ideas and how
the models are estimated rather than the technical details.

10 hours with me+ 2 hours with the RA

Website of the course: click here

Check the syllabus for information about grading, references,
etc.

please check it regularly for updates

Main course materials can also be found in classroom.
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2. 9 Questions to review basic econometrics
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9 Questions to review basic econometrics

1. What’s the role of Econometrics?

(Order doesn’t imply relevance)
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9 Questions to review basic econometrics

1. What’s the role of Econometrics?

(Order doesn’t imply relevance)

1. Prediction: Uses data on a number of variables to predict
another one.

2. Estimation and Inference: It develops and applies statistical
methods to quantify and test causal relationships between eco-
nomic variables.
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9 Questions to review basic econometrics

1. What’s the role of Econometrics?

(Order doesn’t imply relevance)

1. Prediction: Uses data on a number of variables to predict
another one.

2. Estimation and Inference: It develops and applies statistical
methods to quantify and test causal relationships between eco-
nomic variables.

This course will focus on (2).
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2. Let y be a dependent variable of interest and let X be an
independent variable.

Does correlation between y and X imply causation?
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2. Let y be a dependent variable of interest and let X be an
independent variable.

Does correlation between y and X imply causation?

and viceversa?

can you provide examples?
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2. Let y be a dependent variable of interest and let X be an
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2. Let y be a dependent variable of interest and let X be an
independent variable.

Does correlation between y and X imply causation?

and viceversa?

can you provide examples?

Since

1) correlation and causation are two different concepts and

2) because we’re interested in causal relationships,

⇒ the goal is to obtain estimates that can be interpreted causally.
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3.a What type of function relating y and X is typically estimated
by econometricians?
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3.a What type of function relating y and X is typically estimated
by econometricians?

E(y|X) : conditional expectation

(There are exceptions: quantile regression).
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3.a What type of function relating y and X is typically estimated
by econometricians?

E(y|X) : conditional expectation

(There are exceptions: quantile regression).

3.b Why so much interest placed on estimating the conditional
mean E(y|X)?
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3.a What type of function relating y and X is typically estimated
by econometricians?

E(y|X) : conditional expectation

(There are exceptions: quantile regression).

3.b Why so much interest placed on estimating the conditional
mean E(y|X)?

Response: Conditional expectation E(y|X) is the optimal.∗ pre-
dictor of y given X.

Meaning:

Consider the problem: what’s the best way of combining in-
formation on X to produce the best predictor for y, best=”lowest
mean squared error (MSE)”

Answer: E(y|X)

0-16



4. What is the simplest model you can postulate for the conditional
expectation?
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4. What is the simplest model you can postulate for the conditional
expectation?

E(y|X) = Xβ

But, does the conditional expectation need to be linear?
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4. What is the simplest model you can postulate for the conditional
expectation?

E(y|X) = Xβ

But, does the conditional expectation need to be linear?

No! in general E(y|X) = g(X) can be highly non linear
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4. What is the simplest model you can postulate for the conditional
expectation?

E(y|X) = Xβ

But, does the conditional expectation need to be linear?

No! in general E(y|X) = g(X) can be highly non linear

A typical assumption in the first econometric courses is linearity:

Assumption 1: the conditional expectation of y given X is linear.

Why do we do this?
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4. What is the simplest model you can postulate for the conditional
expectation?

E(y|X) = Xβ

But, does the conditional expectation need to be linear?

No! in general E(y|X) = g(X) can be highly non linear

A typical assumption in the first econometric courses is linearity:

Assumption 1: the conditional expectation of y given X is linear.

Why do we do this?

Simplicity
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4. What is the simplest model you can postulate for the conditional
expectation?

E(y|X) = Xβ

But, does the conditional expectation need to be linear?

No! in general E(y|X) = g(X) can be highly non linear

A typical assumption in the first econometric courses is linearity:

Assumption 1: the conditional expectation of y given X is linear.

Why do we do this?

Simplicity

There’s one case where we know that the conditional expec-
tation is linear, which one?
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5. For a linear conditional expectation, what is the model we take
to the data?

y = Xβ + ϵ (1)

ϵ: random noise

“Chance is only the measure of our ignorance.” (Henry Poincaré,
French mathematician).

A key assumption: recall that we want E(y|X) = Xβ, therefore
Assumption 2: E(ϵ|X) = 0

Assumption 2 demands that other variables we ignore that can have
an impact on y (which are assembled in ϵ) should be uncorrelated
with X.

Under Assumption 2, taking expectations in (1).

E(y|X) = E(Xβ|X) +E(ϵ|X) = Xβ
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6. Under Assumptions 1 and 2, how would you estimate (1)?
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6. Under Assumptions 1 and 2, how would you estimate (1)?

OLS.
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6. Under Assumptions 1 and 2, how would you estimate (1)?

OLS.

(Bottom line: Econometrics would be very simple if Assumptions
1 and 2 were always true!)
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7. Under Assumptions 1 and 2, what would be the (asymptotic)
properties of your estimator?
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7. Under Assumptions 1 and 2, what would be the (asymptotic)
properties of your estimator?

β̂ is consistent, i.e., as the sample size N → ∞
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7. Under Assumptions 1 and 2, what would be the (asymptotic)
properties of your estimator?

β̂ is consistent, i.e., as the sample size N → ∞

β̂N
p→β

β̂N is asymptotically normally distributed

Allows very easy inference (confidence intervals, testing hy-
potheses...).
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8. Under Assumptions 1 and 2, does β̂ have a “causal” interpre-
tation?
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8. Under Assumptions 1 and 2, does β̂ have a “causal” interpre-
tation?

YES!
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8. Under Assumptions 1 and 2, does β̂ have a “causal” interpre-
tation?

YES!
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9. And what if either Assumption 1 or Assumption 2 holds?

NO

If Assumptions 1 or 2 fail, β̂ will be a measure of the linear
association between y and X.

Why?
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9. And what if either Assumption 1 or Assumption 2 holds?

NO

If Assumptions 1 or 2 fail, β̂ will be a measure of the linear
association between y and X.

Why?

If Assumption 2 fails: β̂
p↛ β

If Assumption 1 fails: what does β even mean, if the rela-
tionship between y and X is not linear?
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Key Takeaways

1. One of the main goals of econometrics is the estimation of
causal relationships

2. Correlation doesn’t imply causation (and viceversa!)

3. Estimating the conditional expectation is typically our main goal
(i.e., given the value of the covariates, what’s the average value of
y).

4. Typical assumptions in elementary econometric courses: linear-
ity of the conditional expectation and exogeneity of the regressors.

5. These are strong assumptions that we will try to relax in this
course.
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2. Motivation and Overview of the course
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This course

In this (first half) of the course we’re going to estimate models
where assumptions (1) and/or (2) might not hold.

We will discuss

1) whether these are assumptions are reasonable or are too de-
manding,

2) what are the consequences of their violation and, most im-
portantly,

3) we will review some methods that will allow us to obtain
consistent estimators when these assumptions are violated.
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Overview of the course

We will depart from the above-outlined framework in two di-
rections:

Direction I

Interest in estimation methods that are valid (in certain cases)
when Assumption 2 is violated.

One of the reasons why Assumption 2 is violated is due to
omitted variables that are in the residual term and are correlated
with the X.

We will analyse how and under what circumstances the use
of panel data models solves this problem.

0-38



Overview of the course, II

Direction II

Interest in estimation methods that are valid under mild as-
sumptions on the functional form: E(y|X) = f (X)

Imposing linearity and/or a specific distribution on the data
are strong assumptions

Tradeoff between efficiency and validity:

Imposing assumptions that are correct leads to more efficient
estimators

Imposing assumptions that are not true leads to inconsistent
estimators
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Non parametric estimation

Departure point: in the vast majority of cases we don’t know
the ”true” model or the “true” distribution of the data.

Approach: We will look at methods that are valid under mild
assumptions about the DGP (we won’t impose restrictions about
the DGP)

→ Non-parametric (or semi-parametric) estimators.

Note: a parametric model is known up to some parameters,
for instance: E(y|X) = Xβ

A nonparametric model is one in which the function itself is
unknown: E(y|X) = g(X)
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4. Introduction to Panel Data Models
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Introduction to panel data models: Roadmap

1. Basic questions: What is panel data? what is it useful?

2. Review of Omitted variable bias.

3. Types of Panel Data: Balanced vs Unbalanced; Micro vs. Macro
panel data.

4. Types of Panel Data Models: Linear vs. Nonlinear; Static vs.
Dynamic.

5. Estimation of Panel data models

5.1. Fixed Effect Models: estimation and inference

5.2. Other estimators: Random Effects Models, Pooled OLS,
Between estimator
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1. Basic questions

What is panel data?

Data where the same individual/unit of observation is observed
several times (more than 1).

Many consecutive cross sections, where we can link units over
time.

N : the number of units (the cross-sectional dimension of the
data)

T : number of time periods (the time or longitudinal dimension
of the data).
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However, panel data refers to all data sets that span (at least)
two dimensions:

Example 1: Individuals observed every year for a number of
years.

Example 2: Firms, each having a number of establishments.

Example 3: Schools, each having a number of students
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Why is panel data useful?

Two main advantages:

Recall that omitted variables are a common cause of violation
of Assumption 2, i.e., they often cause violation of the exogeneity
assumption.

1. The use of panel data helps avoiding the omitted variables bias

Why? it allows to control for unobserved characteristics that
are constant over the time dimension.

Unobserved characteristics are accounted for, not left in the
residual term (therefore, avoiding the correlation between the re-
gressors and the residual term).
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A quick example

Context: you want to study whether studying more years leads
to a better salary.

You have a sample of N individuals observed at a point in time
and you estimate:

salaryi = β0 + β1yearseduci + ϵi

Problem: individuals are heterogeneous as they differ (among
other things) in their innate ability
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A quick example

Context: you want to study whether studying more years leads
to a better salary.

You have a sample of N individuals observed at a point in time
and you estimate:

salaryi = β0 + β1yearseduci + ϵi

Problem: individuals are heterogeneous as they differ (among
other things) in their innate ability

More ability will lead to more years of education AND to have
a higher salary (for reasons different from education)⇒ omitted
variable

Panel data will help us solve this problem:

Having repeated observations for these individuals will allow
us to “control” for all the individual unobserved heterogeneity
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2. Panel data also helps studying dynamics:

Example: Habit Formation in Consumption

Suppose you want to study habit formation in consumption. Does
last period’s consumption affect this period’s consumption, beyond
what’s explained by current income?

With cross-sectional data, you can’t observe how an individual’s
consumption evolves over time. But with panel data, you can
estimate:

Cit = β0 + β1Cit−1 + β2Incomeit + αi + εit (1)

Here you’re directly testing whether lagged consumption (Cit−1)
matters, controlling for individual fixed effects (αi). If β1 > 0 and
significant, it suggests consumption habits persist over time.
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Other dynamic examples:

• Labor market dynamics: Does being unemployed today af-
fect your probability of being unemployed next period (state
dependence)?

• Firm investment: Do current profits affect next period’s
investment, or do firms smooth investment over time?

• Health dynamics: Does being sick this year affect health
outcomes next year?
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2. Motivation for Panel data Models:
(Review of) Omitted variable Bias

Consider a (“true”) model that verifies Assumptions 1 and 2.

y = α+ βX + γη + ϵ

Assume however that the following model is estimated:

y = α+ βX + u

with u = γη + ϵ.

It follows that:

β̂
p→

Cov(y,X)

Var(X)
=

Cov(α+ βX + γη + ϵ,X)

Var(X)
= β + γ

Cov(η,X)

Var(X)
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Omitted variable bias (OVB):

If Cov (η, X) = 0, then the estimate of β̂ is consistent.

If Cov (η, X) ̸= 0, then the estimate of β̂ is not consistent.

First important fact to remember:

omitting variables that are uncorrelated with the regressors
doesn’t lead to bias.

If Cov(η,X) ̸= 0, the bias (β̂ − β) is

β̂ − β = γ
Cov(η,X)

Var(X)
+ op(1)

0-51



Omitted variable bias (OVB):

If Cov (η, X) = 0, then the estimate of β̂ is consistent.
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Second important fact to remember: Omitted variable bias
formula

β̂ − β = γ
Cov(η,X)

Var(X)
+ op(1)

The sign of the bias depends on the product of two terms:

the correlation of X and the omitted variable

the coefficient γ of the omitted variable, η

If this product is positive, the bias is positive: β̂ will tend to be
larger than the true β

If this correlation is negative, the bias is negative: β̂ will tend
to be smaller than the true β

Understanding this formula well is important: it will allow you
to predict the direction of the bias of your estimates!
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An Example

Consider this example:

You want to estimate the impact of studying a master in data
science on wages and you have data on both variables for a repre-
sentative sample of people in their 30’s. If you regress wages on
‘master’:

What omitted variables could be in this regression?

Is it reasonable to expect that these variables are uncorrelated
with the variable “master”?

Can you anticipate the direction of the bias?
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Some examples of datasets with panel structure
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3. Types of panel data: A First Classifications
of Panels

1. Balanced and Unbalanced panels

2. Short and Long panels (or micro and macro panels)
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Balanced vs. Unbalanced panels.

Balanced panel: every i ∈ N has T observations.

Unbalanced panel: if the above is not true.

Example: consider a panel of countries observed over time,
developed countries tend to have all observations available, de-
veloping ones typically have some missing values for some time
periods.

For simplicity, we will typically consider balanced panels in the
following.

Methods that allow for unbalancedness are not complicated, see
Chapter 17 in Wooldridge (you will learn about sample selection
issues and attrition).
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Short vs Long panels

Short panels (micro panels): Large N , short T . Example: A
sample of workers observed three time periods.

Long panels (macro panels): Large T (N can be smaller or
comparable in size). Example: OECD countries observed at a
monthly frequency for 30 years.
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Short vs Long panels

Short panels (micro panels): Large N , short T . Example: A
sample of workers observed three time periods.

Long panels (macro panels): Large T (N can be smaller or
comparable in size). Example: OECD countries observed at a
monthly frequency for 30 years.

The techniques needed to deal with these type of datasets may
differ.

If N is the dominant dimension (short panels), asymptotics
are computed considering N → ∞, similar to cross-sectional data

But if T is the dominant dimension (long panels), asymptotics
are computed considering T → ∞ or T ,N → ∞, more similar to
time-series data

In this course we will consider N >> T
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4. Types of Panel Data Models
Let’s write now the panel data models that then we will take

to the data. First distinction: linear vs. nonlinear models.

Linear panel data model, e.g.:

yit = ci +Xitβ + εit

where i = 1, . . . ,N and t = 1, . . . ,T denote the first and second
dimensions of the data. For instance, i can denote, individuals,
firms, countries, etc. and t, time (or space, or other dimensions
that the data might have).

Non linear panel data model:

yit = g(ci,Xit, ϵit)

where g is a nonlinear function.
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Estimation of nonlinear panel data models presents additional
complications (due to the incidental parameters problem) and re-
quires alternative estimation approaches.

We will start by considering linear models.

0-61



Second distinction: Static vs. Dinamic panels

Static panel data models: no lagged dependent variable in the
regression. E.g.,

yit = ci +Xitβ + εit

Dynamic panel data models: lag(s) of the dependent variable
are included in the model:

yit = ci +Xitβ + γyit−1 + εit

Introducing dynamics in the regression complicates estimation
because yit−1 is endogeneous.

Different estimation methods: GMM.
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First models we will take to the data:

Static and Linear Panel data Models

We will begin by considering linear and static panel data models
(i.e., do not include lags of the dependent variable).

yit = ci +Xitβ + εit

Let’s focus on ci, the “novelty” in this model.

c contains all the characteristics of individuals that are constant
over time (no t subindex!).

It’s typically non-observable, so c is often called “unobserved
individual heterogeneity”.

Despite being non-observable, having panel data allows con-
trolling for this term
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More on c

Because c is constant across individuals, it’s called “fixed”;

. . . but it changes across individuals, so it’s considered to be a
random variable (don’t be fooled by the name!).

Note 1: The term “Fixed effect” is also typically employed
in a different context: models where c and X are allowed to be
correlated. We will go back to this below.

Note 2: Obviously it’s also possible to estimate ”conventional”
models with panel data, i.e, yit = c+Xitβ+ εit. This is typically not
a good idea unless one wants to estimate the impact of a variable
that doesn’t vary over time.
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5. Estimation of panel data models
We’re interested in estimating this model.

yit = ci +Xitβ + εit

with i = 1, . . . ,N , t = 1, . . . ,T .

Xit is a 1×K vector of regressors. In general, it can contain
variables that only vary over t, or vary over the two dimensions.

Depending on the estimator employed, it can contain (or not)
variables that only vary over i.
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Types of Estimators for linear and static panel data
models

The assumptions placed on ci will determine the estimator that
should be employed.

Assumptions on ci: alternative scenarios

1. First case: ci = c is constant and non-observable.
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Types of Estimators for linear and static panel data
models

The assumptions placed on ci will determine the estimator that
should be employed.

Assumptions on ci: alternative scenarios

1. First case: ci = c is constant and non-observable.

Then, use “pooled OLS”, i.e., estimate everything with OLS.

This is just the type of regressions you’re used to.

No omitted variable bias (despite c being non-observable). (Why?)
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Second case: ci is random but observable.

Then, include these variables in the regression, estimate by
OLS.

For instance: age, gender, education of the parents, etc. etc.

No omitted variable bias in this case (assuming that all the
relevant characteristics are observed!). (Why?)
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Third case: ci non-constant (i.e. random) and non-observable:
this is the interesting case!

Two types of assumptions on ci: Fixed or Random Effects

Fixed Effects models: allow for arbitrary correlation between c
and X. (Implications for OLS?)

Random Effects models: assume that the correlation between
c and X is zero. (Implications for OLS?)
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Exercise

Which approach do you think is more general/less problematic?

Why?
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Fixed or Random Effects?

FE estimators: valid under any value of corr(X, c), including
zero.

RE estimators: only valid if corr(X, c) = 0

In theory: It’s possible to test for random or fixed effects
(Hausman tests).

In practice: it’s complicated. The test itself relies on strin-
gent assumptions.

Always try to use estimators that are valid under general assumptions!⇒
Fixed effects are much safer.
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Lecture 1: Key Takeaways

In econometric models, a key threat to identification is not
including all relevant variables in the model

In most cases, this will give rise to biased estimators: omitted
variable bias

Having panel data allows us to control for all the unobserved
and time-invariant individual heterogeneity

Panel data: repeated observations⇒

Data with two subindices, i = 1, . . . ,N and t = 1, . . . ,T

Typically: individuals over time, but not necessarily
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Lecture 1: Key Takeaways, II

In this course: N is large and T is small (micro-panel). (Other
cases also possible)

We’re interested in estimating this model.

yit = ci +Xitβ + εit

with i = 1, . . . ,N , t = 1, . . . ,T .

ci: unobserved, captures individual heterogeneity that is invari-
ant over time
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Lecture 1: Key Takeaways, III

How to estimate this model?

Different assumptions of ci ⇒ different estimators.

1. First case: ci = c is constant: “pooled OLS”, i.e., estimate
everything with OLS.

2. Second case: ci is random. Two cases

cov(ci,Xi) is unrestricted (interesting case!): Fixed effects
estimator

cov(ci,Xi) = 0 (very limited use!): Randoms effects estimator
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5.1. Fixed Effects Estimator

0-75



Roadmap
I. Fixed Effects Estimator

FE estimation: Within transformation

FE estimation:Dummy variable estimator

FE estimation: First difference transformation

2. Trade-offs

3. Two-way fixed effects; The relation with DiD models

4. Inference in Fixed Effects models: robust versus clustered-
robust standard errors.
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5.1. Fixed Effects Estimator

Recall the main framework:

c random, nonobservable, c and X are allowed to be corre-
lated

Because this is much more general, this should be your first
choice!

Model to be estimated:

yit = ci +Xitβ + εit

where cov(ci,Xit) can take any value (including zero).
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Main identification assumption (FE1): Strict exogene-
ity

Strict Exogeneity:

FE1 : E(εit|Xi, ci) = 0

Meaning of strict: the cond. expectation needs to be zero for
all values of t, past, contemporaneous and future values. This
implies cov(εit,Xit+h) = 0 for all h.

An additional condition: Xit cannot contain time-invariant vari-
ables, we need to drop those from the equation (we’ll see why).

Important: FE estimator only allows to estimate the impact of
time-varying explanatory variables
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Exercise: Identification in Panel Data Models
Consider the following panel data model with time period dum-

mies d2t, . . . , dTt, time-constant observables zi, and time-varying
variables wit:

yit = θ1+ θ2d2t+ · · ·+ θT dTt+ ziγ1+d2tziγ2+ · · ·+dTtziγT +witδ+ ci+uit

with E(uit|zi,wi1, . . . ,wiT , ci) = 0 for t = 1, 2, . . . ,T

Questions:

(a) Explain why θ1 and γ1 cannot be separately identified from
ci.

(b) Which parameters involving zi can be identified? Provide
intuition.

(c) Suppose yit = log(wageit) and zi includes a female indicator.
What can we estimate about the gender wage gap, and what can
we not estimate?
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Solution
(a) Identification problem with θ1 and γ1:

The term θ1+ ziγ1 cannot be distinguished from ci because both
are time-constant.

Any value attributed to the intercept or to zi’s effect in period
1 could equivalently be absorbed into the unobserved individual
effect.

(b) Identifiable parameters:

The vectors γ2, γ3, . . . , γT are identified.

These measure differences in the partial effects of time-constant
variables relative to the base period (t = 1).

We can test whether effects of time-constant variables have
changed over time.

(c) Gender wage gap application:

We cannot estimate the gender gap in any particular time pe-
riod. We can estimate how the gender gap has changed over time.
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How to estimate fixed effects models?

In a nutshell: transform the model, get rid of ci, then estimate!

The idea is simple:

Linear panel data models allow for transformations that get
rid of ci from the model.

Since ci disappears from the model, we can use OLS on the
transformed model

There are different types of transformations/estimators: within
transformation, first differences transformation, dummy variables
estimator.

First transformation: within transformation or fixed effects
transformation
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FE estimation: Within transformation

Step 1: Consider the FE model and average each variable over
t = 1, . . . ,T to get:

ȳit = ci + X̄iβ + ε̄i

where ȳit = T−1
∑T

t=1 yit, X̄i = T−1
∑T

t=1 Xit, ε̄i = T−1
∑T

t=1 εit

Step 2: Compute the difference yit − ȳit:

yit − ȳi = (Xit − X̄i)β + εit − ε̄i

Notice that ci disappears in the transformation!

Step 3: Estimate the resulting model by (pooled) OLS: con-
sistent, as there are not omitted variables!!
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In practice:

Use software to do the two steps (don’t do them yourself)

Why? There’s an adjustment in the degrees of freedom that
affects the computation of the residual variance, the software will
do it automatically:

σ̂2
u =

∑N
i=1

∑T
t=1

ˆ̃u 2
it

NT −N −K
.
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Interpretation

In a nutshell: the fixed effect estimator is a pooled OLS estima-
tor applied on a model where all the variables have been demeaned.

Technical Note I: To achieve consistency strict exogeneity is
key! Why?

The “transformed” (demeaned) variables contain all values of
the variables for t = 1, ...T , not only the contemporaneous ones.

For these variables to be exogeneous (in the usual sense) then:

E
[
(xit − x̄i)

′(uit − ūi)
]
= 0.

Under Assumption FE.1, uit is uncorrelated with xis for all s, t =
1, 2, . . . ,T . It follows that uit and ūi are uncorrelated with xit and
x̄i for all t = 1, 2, . . . ,T .
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Technical Note II: X cannot include time-invariant variables.
Why?
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Technical Note II: X cannot include time-invariant variables.
Why?

After demeaning, time invariant variables will become a vec-
tor of zeros in the matrix X. Then, that matrix will become non-
invertible!

This is in fact the second identification condition:

FE2 : rank((X − X̄)′(X − X̄)) = K
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Fixed effect estimator=Within estimator
Interpretation of the coefficients estimated using the
within estimator

The within estimator only exploits the within-variation for iden-
tification

the within transformation removes all differences across the
units: all of them have the same mean, equal to zero.

Therefore, all the variation employed for identification comes
from within-units.
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Example

How does joining a union affect a worker’s wage?

Setup:

• We have panel data on workers over multiple years.

• Each worker i is observed for t = 1, 2, . . . ,T time periods.

• Let wit be the log wage of individual i at time t.

• Let unionit be an indicator that is 1 if worker i is a union
member at time t, and 0 otherwise.

• There are unobserved, time-invariant characteristics (e.g. in-
nate ability, ambition) that might affect wage levels.
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A naive “pooled OLS” model could be:

wit = β0 + β1 unionit + uit.

But: only consistent if 1) individuals are identical (so β0 can
capture unobserved effects) OR if the unobserved effects are un-
correlated with joining an union.

Fixed Effects model:

wit = ci︸︷︷︸
time-invariant FE

+ β1 unionit + εit,

where ci is a worker-specific intercept capturing all time-invariant
traits of individual i.
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The Within Transformation (“De-meaning”)

(wit −wi) = β1 (unionit − unioni) + (εit − εi).

Interpretation of the Within-Estimator Coefficients:

• We can only estimate this equation if there are workers that
switch from being a union member to a non-member (and
viceversa). Why?

• β1 measures how log wage changes for the same individual
when that individual switches from being non-union to union.

• β1 is identified by those individuals who change their union
status at least once during the panel. Individuals who are
always union or never union provide no within variation to
identify β1.
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Asymptotic Properties of the FE estimator

Recall β̂FE = (X̃ ′X̃)−1X̃ ′ỹ, where the “∼” denotes that the
data has been demeaned.

Under FE1 and FE2, as N → ∞ and fixed T

β̂FE is consistent and asymptotically normal:

N−1/2(β̂FE − β)
d→ N(0,Avarβ̂FE)

where Avarβ̂FE denotes the asymptotic variance of β̂FE

The specific shape of Avarβ̂FE will depend on the specific as-
sumptions about heteroskedasticity and serial correlation).

0-91



Key Takeaways

Fixed effects estimator: can deal with unobserved heterogene-
ity, correlated with the X’s.

Modus operandi: 1) demean all variables, 2) apply OLS

Interpretation: We exploit only within-individual (or within-
unit) variation over time.

Time-Invariant Factors Are Removed: Any unchanging traits
such as innate skill or background are taken out by “de-meaning”
each person’s data.
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Alternative Approaches for estimating models
with Fixed Effects

As mentioned earlier, the basic idea for estimating linear panel
data models with fixed effects consists of transforming the data to
get rid of ci

The within transformation is one way of doing so (=demean
all the variables).

Two additional (and equivalent) approaches:

First differencing estimator: transforms the model to get rid of
ci by taking first differences

Dummy-variable estimator: estimates ci by including individual-
level dummy variables.
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Alternative approach I: Dummy-variable estimator

Key idea: This estimator treats ci as parameters to be esti-
mated.

How? Include dummy variables Di in the model so that for
each i, Di is 1 for the T values of i and zero otherwise (exclude
the constant of the model or omit one Di to avoid perfect multi-
collinearity).

It turns out that is estimator is identical to the fixed effects one
(numerically identical!).

Why?
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Dummy-variable estimator, II

Recall the Frisch–Waugh–Lovell theorem: the coefficient on
Xit obtained from a regression that includes individual dummies is
identical to the coefficient obtained by:

1. partialling out the individual dummies from yit and Xit, and

2. regressing the resulting residuals on each other.

Key fact: Demeaning within individuals is exactly the residual-
ization step implied by FWL.

Conclusion: the DV estimator and the fixed effects estimator yield
identical estimates of β.
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Dummy-variable estimator, III

The DV estimator provides estimates for the ci parameters, in
contrast to the FE estimator.

Key fact: However, in short panels these parameters ARE NOT
estimated consistently. Why?

The Incidental Parameter Problem: arises when the number of
nuisance parameters increases with the sample size.

In panel data models with individual fixed effects, with large N
but fixed T : the number of nuisance parameters (the fixed effects)
increases with the sample size, N .

Intuition: New data doesn’t help to ”learn”/accumulate knowl-
edge on the c′, because the number of these parameters keeps
growing as new data arrives!
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Therefore:

In short panels (N → ∞, fixed T )

ĉi are inconsistent

If T is sufficiently large, we can obtain the estimated c′s, plot
the distribution and have a relatively precise idea of the degree of
heterogeneity in the distribution.

If T also tends to infinity: ci will be consistently estimated.
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How to obtain estimates for the c′s?

Most statistical packages don’t report directly the ”c”’s

Alternative: run an OLS regression with dummies as explained
above.

Or, if you’ve used the within estimator, you could also obtain
these values by computing:

ĉi = ȳi − X̄iβ̂

(same problems apply of course!)
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Alternative approach 2: First differencing methods

Recall that the key idea for estimating models with FE is to
transform the model so that we can get rid of ci.

First difference transformation: get rid of ci by taking first
differences in the model, i.e, ∆yit = yit − yit−1

Recall the model:

yit = ci +Xitβ + εit (1)

yit−1 = ci +Xit−1β + εit−1 (2)

Compute (1)-(2) to obtain:

∆yit = ∆Xitβ + ∆εit

ci has disappeared!
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Comparison FE and FD estimators

If T=2, both yield the same β̂

If T > 2, then they can be different.

Choosing one or the other hinges on assumptions on the persis-
tence of the serial correlation of the error term. (See Wooldridge,
10.7.1)

Under (very unrealistic) assumptions of i.i.d. residuals, FE es-
timator is more efficient.

In applied work, the FE is typically more applied/reported.
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2. Pros and cons: Tradeoffs of using FE mod-
els

FE models are great to avoid OVB (if OV are time invariant)

But there are some cons:

1. If there’s measurement error in the data, it can become worse
(therefore, it can have a larger impact on the estimates)

2. By demeaning the variables, we can also eliminate variation
in the data that is ”good” and therefore, estimates can be much
less precisely estimated.
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Why is this?

Fixed effects estimation can exacerbate measurement error be-
cause demeaning removes most of the true signal when regressors
vary little over time, while the measurement error remains, lowering
the signal-to-noise ratio and increasing attenuation bias.

This problem is more severe when T is small and the regressor
has little variation.

We will see these points in two examples
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Example

Studying the Effects of Unions on Wages

Freeman (1984) studies the effect of unions on wages.

Identification is tricky in this problem due to many potential
omitted variables.

He provides a comparison of estimates using OLS in cross sec-
tion and FE.
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Studying the Effects of Unions on Wages

Cross sectional and FE estimates:

Cross sectional analysis delivers higher coefficients, why can
this be?
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Comparing Cross-Section to Panel Results

A potencial explanation: OVB is positive, i.e., either: Cov(εit, ci)
≥ 0 AND γ > 0 OR both are negative.

Can you think of omitted variables that could create this cor-
relation?

However, there is another suspect: Measurement Error
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Comparing CS to Panel: Measurement Error

The use of FE models can typically worsen measurement error.
Why?

The variation in the data is typically due to two terms: the
”true” variation and potentially, the variation induced by noise or
measurement error.

When transforming the data to get rid of c, the “true” variation
in the data decreases (we’re removing all the between variation!).
However, the within transformation doesn’t get rid of the noise.

As a result, the measurement error becomes relatively larger:
the signal-to-noise ratio decreases.

Recall that (classical) measurement error leads to biased coef-
ficients. The bias is always towards zero (attenuation bias).

As the measurement error is larger, attenuation due to it can
also be larger.
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Second tradeoff: FE can eliminate “good” variation in
the data

Example: Class Size and Test Scores

• Research Question: Does smaller class size improve test
scores?

• Cross-Section OLS:

TestScores = α+ βClassSizes + us

– Uses variation across schools (some large, some small).

– Often finds a negative relationship:

β̂ < 0 (larger classes → lower test scores).
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Consider now panel data on schools and introduce school
FE:

TestScores,t = αs + βClassSizes,t + us,t

Controls for time-invariant differences across schools (good to
control for school-level omitted variables!).

Identification now relies on within-school fluctuations over
time.

Outcome:

• Variation in class size within each school (e.g., 25.5 to 24.8)
may be small.

• This can lead to a smaller (or less precise) estimate of β.

• Large cross-sectional differences are no longer exploited, hence
“chewed up” by fixed effects.
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3. Two-way fixed effects
The two-way fixed effects model extends the standard FE ap-

proach by controlling for unobserved heterogeneity across two di-
mensions: individuals (or entities) and time periods.

yit = ci + λt +Xitβ + εit,

where

• ci: Individual-specific fixed effect.

• λt: Time-specific fixed effect.

λt captures shocks or trends common to all individuals in period
t (e.g., economic changes, changes in policies, etc).
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Estimation Methods for TWFE models

• Dummy Variable Approach: Include dummy variables for
each individual and each time period.

• Within Transformation: Demean the data by subtracting
individual and time averages to remove fixed effects, avoiding
a large number of dummy variables.
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Example

Consider analyzing the impact of job training programs on
wages:

Wageit = αi + λt + β1Trainingit + εit.

- αi: Controls for innate ability/other individual-specific factors.

- λt: Controls for year-specific economic conditions.

- This specification isolates the effect of Trainingit on Wageit by
accounting for unobserved individual and time-specific influences.
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More generally:

You can construct models with a lot of different types of FE.

An example: you have panel data on conflict at the country
level over a number of months and want to study the impact of a
country-level variable that varies over time. In addition to country
FE, you can write models that contain

1) month FE: control for global trends

2) region-specific month FE: you let the month FE to change
across regions/continents (because the trends can differ across
regions)

3) country-specific decade -FE: you allow for unobserved factors
that create slowly moving trends that are country-specific.

. . .
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The relation between TWFE and
Difference-in-Differences

Recall the two-period diff-in-diff setup:

yit = α+ γ ·Treati + λ ·Postt + δ · (Treati ×Postt) + εit

With individual and time fixed effects, TWFE generalizes this:

yit = ci + λt + δ ·Dit + εit

where Dit = 1 if unit i is treated at time t.

In the canonical 2x2 case (2 groups, 2 periods), TWFE re-
covers the standard diff-in-diff estimator.

Intuition: ci absorbs group differences, λt absorbs time trends,
δ captures the treatment effect.
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Outside of the canonical case: apply with cau-
tion!

TWFE models allow to estimate a diff-in-diff set up if T = 2,
but what if T > 2?

The analogy can break!

This realization is relatively new in the diff-in-diff literature, you
will see a lot of papers that apply (naive) TWFE when they want
to estimate diff-in diff models when T > 2.

When does the analogy break? Staggered treatment timing
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The Problem: Staggered Treatment Timing
In practice, units often receive treatment at different times

(staggered adoption).

The natural approach: run TWFE with Dit = 1 if unit i is
treated by time t.

Problem: TWFE estimates a weighted average of many 2x2
diff-in-diff comparisons, including:

“Good” comparisons: treated vs. not-yet-treated

“Bad” comparisons: late-treated vs. already-treated (using treated
units as controls!)

If treatment effects are heterogeneous over time, these “bad”
comparisons can produce:

Biased estimates

Wrong sign (negative when true effect is positive!)
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Recent Literature and New Estimators
This is a very active (and already large) literature at the mo-

ment

Key papers identifying the problem:

Goodman-Bacon (2021): Decomposition of TWFE into weighted
2x2 comparisons.

de Chaisemartin & D’Haultfœuille (2020): Shows TWFE weights
can be negative.

Proposed solutions:

Callaway & Sant’Anna (2021): Group-time ATTs, aggregated
appropriately.

Sun & Abraham (2021): Interaction-weighted estimator.

Borusyak, Jaravel & Spiess (2024): Imputation approach.
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Key Takeaways about TWFE and DiD:

If two periods: TWFE is fine to estimate DiD models.

If more than two periods: check if treatment is staggered. If
it is, don’t use naive TWFE.

Why? TWFE uses already-treated units as controls for later-
treated units.

If treatment effects are heterogeneous (vary by cohort or over
time), this biases δ̂.

If treatment effects are homogeneous, TWFE is still valid even
with staggered timing. With staggered treatment and het-

erogeneous effects, use modern DiD estimators rather than naive
TWFE.
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Estimating FE models in practice
You can estimate FE models using the software you prefer

(STATA, R, Python . . . )

Many economists use STATA, you will find a lot of examples,
papers, replication packages written in STATA.

See the website of the course for useful resources/examples.
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Example: FE with stata

Author: Oscar Torres-Reyna. Tip: use cluster s.e. (i.e., replace
“robust” by vce(cluster country))
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4. Inference in Fixed Effects Models
Within Estimator

Many text books devote considerable time to “efficiency” re-
sults (=whether this or that estimator has the smallest variance).

Problem: these results are developed under very unrealistic as-
sumptions! therefore they are not very useful.

For instance, consider this assumption:

FE3 : V ar(εi|Xi, ci) = σ2
εIT

where IT is the T × T identity matrix.

Under FE3, the within estimator is efficient. But is FE3 a
good/necessary assumption?
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Within Estimator: Inference, II

FE3 assumes two things:

1) Homokedasticity and

2) lack of serial correlation.

Are these good assumptions?

NO! they are very demanding

Bottom line: never consider FE3 to be true in applications!

or: don’t worry about efficiency, worry about computing realis-
tic standard errors.

0-122



Within Estimator: Inference, III

In the following we relax the assumptions if FE3.

Goal: compute standard errors of our β estimates that are
robust to violations of FE3.

If 1) doesn’t hold (but 2) does (heterokedasticity but no
serial correlation): compute robust standard errors

If 1) and 2): compute clustered standard errors
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Robust Standard Errors

Robust standard errors= standard errors that take into account
that there could be heteroskedasticity in the residual term.

Always suspect heteroskedasticity in any regression you run (it’s
straightforward to compute s.e. that are robust to that).

Under heteroskedasticity:

FE3′ : Var
(
εit | Xi, ci

)
= σ2

ε,it > 0, finite,

and (no serial correlation)

Cov
(
εit, εis | Xi, ci

)
= 0 ∀ s ̸= t.
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Heteroskedasticity-Robust (Eicker–White) Variance:

V̂ar(β̂) = (X ′
withinXwithin)

−1

∑
i,t

ε̂ 2
it Xwithin,it X

′
within,it

 (X ′
withinXwithin)

−1,

where
Xwithin,it = Xit − X̄i, ε̂it = ε̃it.

Interpretation:

• This adjusts for any form of heteroskedasticity in εit.

• It does not account for correlation across t within each i (i.e.,
no clustering).

• In software, this is often labeled robust or HC standard errors
without clustering.

Is this “enough” to get reasonable standard errors?

In most instances, it’s not
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Clustered standard errors

When using panel data you also have to suspect serial correla-
tion. Why?

We might assume that individuals are i.i.d. across themselves,
but this assumption doesn’t make sense within-individuals.

Since an individual is correlated with herself over the T obser-
vations → serial correlation.

We need to account for this in the standard errors.

clustered standard errors: s.e. developed under the assumption
that within-individuals there could be arbitrary correlation. This
allows for serial correlation AND heteroskedasticity.
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In this case FE3 becomes:

FE′′ : Var
(
εi | Xi, ci

)
= Ωε,i(Xi),

which is positive definite (p.d.) and finite.

FE” is good because s.e. derived under this assumption are
also valid under FE and FE’ !

Under FE” you should compute clustered robust standard er-
rors.

This type of s.e. allow for heteroskedasticity AND within serial
correlation.

For more details on the computation of these s.e. see the notes
in the website of the course.
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5.2. Other estimation approaches for panel data models
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Other estimation approaches: Roadmap

1. Pooled OLS

2. Between estimator

3. Random Effects
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5.2. Other estimation approaches for panel
data models

All the methods that we’ll see now DO NOT allow for corre-
lation between the regressors and the fixed effects.

As a result, they cannot help solving the OVB as FE can!

They are only appropriate under stringent assumptions over ci.
Let’s revise them quickly.

1. Pooled OLS

2. Between estimator

3. Random Effects
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Pooled OLS
The model:

yit = c+Xit + εit (1)

c is assumed to be constant, therefore corr(c,Xi) = 0

This method ignores the panel structure of the data

As mentioned earlier, OLS can be employed.

Xit can contain time invariant variables; c can be estimated
consistently (as opposed to FE!)

(
ĉPOLS

β̂POLS

)
= (W ′W )−1W ′y,

where W = [ιNT X ] and ιNT is an NT × 1 vector of ones.

But, big drawback: everything depends on ci = c being constant
across i (very stringent assumption).
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Between Estimator
Pooled OLS vs. Between Estimator

• Pooled OLS uses variation over both time and cross-sectional
units to estimate β.

• Between Estimator uses just the cross-sectional variation.

How it works: consider the individual-Specific Effects Model:

yit = ci +Xitβ + εit.

Average the data over time (t = 1, . . . ,T ), it gives

yi = ci +Xiβ + εi,

which can be rewritten as the between model:

yi = c+Xiβ +
(
ci − c+ εi

)
, i = 1, . . . ,N ,
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where yi =
1

T

T∑
t=1

yit, Xi =
1

T

T∑
t=1

Xit, εi =
1

T

T∑
t=1

εit.

Between Estimator:

• OLS regression of yi on an intercept and Xi.

• Uses variation between individuals; analogous to cross-section
regression (special case T = 1).

• Consistent if Xi is uncorrelated with
(
ci − c+ εi

)
• Inconsistent under fixed effects if ci is correlated with Xit and

hence Xi.
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Random Effects Models

• Consider the individual-specific effects model:

yit = ci +Xitβ + εit,

• Key Random effects assumption: ci and εit are uncorrelated.

• It would be possible to estimate this by pooled OLS (it is
consistent)

• But notice that ci is in the error term: heterokedasticity!

• Therefore, feasible GLS improves efficiency under the RE
model.
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Random Effects: Key Assumptions
Model Setup:

yit = ci +Xitβ + εit,

where ci is unobserved and εit is idiosyncratic.

Assumption RE.1:

(a) Strict exogeneity:

E(εit | Xi, ci) = 0 for all t.

(b) Orthogonality between ci and Xi:

E(ci | Xi) = 0.

Why RE.1?

• Allows treating ci as part of the error term.

• Ensures strict exogeneity needed for consistent GLS.
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Random Effects: Estimation Procedure
Error Structure:

vit = ci + εit, with W = E(viv
′
i) = σ2

εIT + σ2
c1T1

′
T

W =


σ2
c + σ2

ε σ2
c σ2

c · · · σ2
c

σ2
c σ2

c + σ2
ε σ2

c · · · σ2
c

σ2
c σ2

c σ2
c + σ2

ε · · · σ2
c

...
...

...
. . .

...
σ2
c σ2

c σ2
c · · · σ2

c + σ2
ε


T×T

.

The matrix W has the random effects structure, depending on two
parameters: σ2

c and σ2
ε .
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Assumptions for Efficiency:

• RE.2: Rank condition for consistent GLS: rank(X′
iW

−1Xi) =
K

• RE.3: Constant conditional variances and homoskedasticity
of ci.

(a) E
[
(εiε

′
i) | Xi, ci

]
= σ2

ε IT .

(b) E
[
c2i | Xi

]
= σ2

c .
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Estimation Steps:

1. Use pooled OLS to get an initial consistent estimate β̂POLS.

2. Compute residuals v̂it and estimate σ2
ε and σ2

c . [Check Wooldridge,
page 734 for details]

3. Form the feasible GLS weight matrix

Ŵ = σ̂2
uIT + σ̂2

c1T1
⊤
T .

4. Obtain the Random Effects estimator:

β̂RE =
( N∑

i=1

X⊤
i Ŵ−1Xi

)−1( N∑
i=1

X⊤
i Ŵ−1yi

)
.
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Properties:

• Two-step FGLS procedure.

• Consistent under RE.1 and rank conditions.

• Efficient under Assumptions RE.1–RE.3.

Variations:

• If RE.3 doesn’t hold and there’s heteroskasticity: use robust
s.e. (sandwich variance-covariance matrix)

• Efficiency is lost if RE.3 fails

• You should always allow for deviations from RE.3 and com-
pute standard errors accordingly, therefore efficiency is lost.
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FE vs RE: Which to Use?
General advice: Use Fixed Effects.

FE is consistent whether or not Cov(ci,Xit) = 0.

RE requires the stronger assumption that ci is uncorrelated with
all regressors.

FE is more robust — if in doubt, use FE.

When to consider RE:

You want to estimate the effect of a variable that doesn’t vary
over time (e.g., gender, race, country of birth).

FE cannot identify effects of time-constant variables (they are
absorbed by ci).

RE allows estimation of ziγ, but only if you believe Cov(ci, zi) =
0.
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RE or FE models?
In theory, it’s possible to test for FE vs RE (Hausman test)

But in practice, the (standard) test is only valid under very
stringent assumptions (homokedasticity, cannot include time dum-
mies), so not very reliable either.

Bottom line: FE models should be your default option!
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RE or FE models?, II
Hausman Test

Logic of the test:

If the RE assumption is true (H0), both the RE estimator and
the FE estimators are consistent.

if it’s false, only the FE model is consistent (H1).

Therefore, under H0, the difference between the RE and the
FE estimators should be small. Under H1, it should be large.

The test rejects the null hypothesis if there are large deviations
between the FE and the RE estimators.
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Hausmann Test
It’s based on the (standardized) difference between the FE and

the RE estimators.

H = (β̂1,RE − β̂1,FE)
′ (V̂ [β̂1,FE ]− V̂ [β̂1,RE ]

)−1
(β̂1,RE − β̂1,FE) (2)

where V(.) denotes the variance of the relevant estimator.

Under R3.1–RE.3 if H0 is true: asymptotic distribution: χ2.

The test rejects H0 (RE) if the value of the test is larger than
the χ2 critical value.
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Hausman Test: A Caveat
The standard Hausman test compares FE and RE estimators

to test H0 : Cov(ci,Xit) = 0.

Problem: The test assumes homoskedasticity and no cluster-
ing.

Under heteroskedasticity or clustered errors, the standard test
is invalid.

There are robust alternatives (Wooldrige) to the standard tests

Practical advice: If you suspect Cov(ci,Xit) ̸= 0, just use FE.
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Robust alternative (Wooldridge):

Run the RE regression.

Add within-transformed variables (X̃it = Xit − X̄i) as additional
regressors.

Test if coefficients on X̃it are jointly zero using cluster-robust
standard errors.

Practical advice: If you suspect Cov(ci,Xit) ̸= 0, just use FE.

0-145



Key Takeaways
This handout introduces the basics of panel data models

Advantage of panel data: allow to control for unobserved, time-
invariant, heterogeneity across the units

General tips:

Use FE models estimated within, FD or dummy variable ap-
proach

Other methods, such as RE, pooled OLS, between estimator,
are not consistent in the general case!

Use s.e. that are valid under general assumptions: clustered
s.e.
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Be careful with the interpretation of these models (they exploit
within-unit variation exclusively!)

The use of panel data models also has drawbacks

Measurement error problems can become more acute

Useful variation can be eliminated by the FE: estimates can
be estimated very imprecisely, large s.e., etc.
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