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Quantile Regression: Summary (so far)

In any empirical analysis relating Y and X, we can be interested
in several aspects of the condional distribution Y|X ==z

m Values that estimate the central tendency of this distribution:
conditional mean, conditional median,

m Values that look at the dispersion of the distribution: condi-
tional quantiles (that look at aspects other than the median),

B QR is typically employed with continuous dependent variables
(so the quantiles are uniquely defined), but there are exceptions
(e.g., count data)



B QR estimators can be obtained by optimizing an objective func-
tion (average of the check function. p(.)), in a similar way as we
do when we do develop OLS estimators.

A

L= argminz pr(Y; — Xb|)
b =1

There's no close-form solution (unlike in OLS), optimization is
done numerically

m Special case: LAD (least absolute deviations).
= Estimates the conditional median
= Advantanges and disadvantages w.r.t. OLS.

= A good option if the data contains outliers

m Estimation is easy, interpretation has to be done with care



T his handout: Roadmap

1. Interpretation of coefficients (cont.)

2. Asymptotic properties

3. Estimation of Standard Errors. Confidence Intervals
4. QR with Panel Data

5. QR with censored data

6. Non parametric quantile regression

7. Quantile causal effects



More on interpretation: Retransformation

In the example of the previous handout: dependent variable is
log expenditures.

m We're interpreting the impact of variable X on logyY in quantile
T, are we interested on this?

m We're typically interested in the effect of X on Y (not on logY).

m Question: if we've estimated a QR where the dependent vari-
able is g(Y) (g is monotonic and increasing function) then how do
we interpret marginal effects with respect to Y7



Before we answer this question, let's consider first transforma-
tions of a variable, its quantiles and expectations.

m Consider a variable Z, g(Z), where g is a monotonic transfor-
mation. For instance g(Z) = Z%,Z >0

« If you know that E(g(Z))=6, what's the value of E(Z)?



Before we answer this question, let's consider first transforma-
tions of a variable, its quantiles and expectations.

m Consider a variable Z, g(Z), where g is a monotonic transfor-
mation. For instance g(Z) = Z%,Z >0

« If you know that E(g(Z))=6, what's the value of E(Z)?

« If you know that the 40th percentile of g(Z) is 4, what's the
value of the 40th percentile of Z7

AS you can see, expectations and quantiles behave differently
when transformations are made. We need to take this into account
when interpreting marginal effects.



Equivalence property of QR: Given ¢-(9(Y)|Z) = X'B, (g is
monotonic and invertible) then ¢.(Y1]Z) = ¢~ 1(X’'B)

m  For example: ¢, (InY|Z) = X'8 = ¢ (Y|X) = X'

Let's go back to the computation of marginal effects.

m Let's derive ¢-(Y|X) with respect to X;:

Oqr(Y|X) _ 0P (g 8, .
0X; 0X ’

The derivative depends on X.

m Average marginal effect (AME):

N

‘]\[_1 Z e(X,L(/BT)/BTj

1=1



Using STATA:

qreg ltotexp totchr age female white
quietly predict xb
gen expxb=exp(xb)

quietly sum expxb

display " Multiplier of QR in logs coeffs to get AME in levels ="

regress ltotexp totchr age female white

r(mean)

Source SS df MS Number of obs = 2,955
F(4, 2950) = 171.39
Model 1041.82144 4 260.455359 Prob > F = 0.0000
Residual 4483.06795 2,950 1.51968405 R-squared = 0.1886
Adj R-squared = 0.1875
Total 5524.88938 2,954 1.87030785 Root MSE = 1.2328
ltotexp | Coefficient Std. err. t P>|t| [95% conf. intervall
totchr .4476954 .0176308 25.39 0.000 .4131256 .4822653
age .0102383 .0035862 2.85 0.004 .0032067 .01727
female -.0952113 .0462155 -2.06 0.039 -.1858292 -.0045934
white .3582365 .1418762 2.52 0.012 .08005 .6364229
_cons 6.196758 .2921724 21.21 0.000 5.623876 6.769641
quietly predict xb
. gen expxb=exp(xb)
. quietly sum expxb
. display "Multiplier of QR in logs coeffs to get AME in levels =" r(mean)

Multiplier of QR in logs coeffs to get AME in levels =3761.9663



m To compute average marginal effects of X; on Y, just multiply
3761 by the relevant coefficient 3,

Final Note: the equivalence property of QR is exact only if the
conditional quantile function is correctly specified.

m In applications this is not generally the case, so it has to be
interpreted as an approximation



Graphical display of coefficients over quantiles

When we estimate QR for different values of = there are a lot
of coefficients to analyze

m Graphical representations of the results are very useful

m One possibility is to construct one graph for each variable in
the regression that displays how g, changes for 7 € (0,1)

m Horizontal line: OLS point estimates and CI (constant across
quantiles)
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In STATA command: grgreg

B You need to install the command first

m the code used to generate the previous graph:

m [ he graph includes the ols coefficients

B Ci and ciols include the confidence interval for the ols and QR
coefficients

ssc install grgreg

bsqreg Itotexp suppins totchr age , reps(100)

grgreg, cons ci ols olsci title(constant suppins totchr age)



2. Asymptotic Properties of the QR estimator

Model: The linear quantile regression model is

Y =X'B8;+e
C]T(€|X) =0

m T hese two equations imply that the conditional quantile = of Y
given X is X'3;

m Notice that the error e is not centered at zero, instead it’'s
centered so that its 7th quantile is zero.

m This is a normalization, but it changes the role of intercept
changes when we move from mean regression to QR.



Recall that (the population) 8, can be obtained as

Br = argminy,E[p- (Y — X'D)].

The QR estimator of 8,, B, is given by the sample analog of
Br:

N

A o1

By = argming - Z pr(Y; — Xb)
1=1



Consistency

Under broad (and a bit technical) assumptions, the QR esti-
mator is consistent:

Br = Br

(From Hansen’'s book):

Theorem 24.3 Consistency of Quantile Regression Estimator
Assume that (Y;, X;) are i.i.d,, E|Y| < oo, E[I X[?] < oo, fr (e] x) exists and sat-
isfies f; (e| x) < D < oo, and the parameter space for § is compact. For any

7 € (0,1) such that

Q; déffE[XX’fT 0lX)]>0 (24.18)

then f; — B as n — oco.
p




Technical note:

m Condition 24.18 is needed for the uniqueness of the coefficients

Br

m A sufficient condition (also called quantile independence): as-
sume that the cond. distribution of the error e doesn’t depend on
X at e =0, thus 24.18 simplifies to

Qr = E(XX/)fT(O)

m Advice: there’'s no need to assume this (this is a strong as-
sumption)

m [ he reason we highlight this is because STATA’s default uses
this suficient condition to compute the var-cov matrix of G-(we'll
see that in a few slides).



Asymptotic Normality

B is v/ N-consistent and asymptotically normal

Theorem 24.4 Asymptotic Distribution of Quantile Regression Estimator
In addition to the assumptions of Theorem 24.3, assume that f; (e | x) is con-
tinuous in e, and f; is in the interior of the parameter space. Then as n — oo

\/ﬁ (BT e ,Br) 7 N, V)

where V; = Q;1Q;Q;! and Q; =E[XX'y?] fory, =7 -1{Y < X'B;}.




And if the model is not exactly linear?

Assume that the conditional quantile 7 is not linear but a linear
model is estimated.

What is the linear model estimating in this case?

m Remember: when the same happens in an OLS framework,
the linear model is the best linear approximation to the conditional
expectation.

m Luckily, the same happens in the case of quantile regression, a
linear model can be also interpreted as the best linear approxima-
tion the conditional quantile.

m See Mostly Harmless p.277 for additional details.



T herefore:

m [ he results above don’'t assume correct specification

m This means that we can interpret the linear function as an
approximation to the "true function”, we don't need the " truth”
to be exactly linear

m T hen: the variance-covariance matrix in theorem 24.4. is the
most general and applies broadly for practical applications where
linear models are approximations (rather than literal truths)

m T his variance-covariance matrix simplifies if we impose different
assumptions, for instance

s Correct specification

= quantile independence



These are the expressions of the var-cov matrix under different
assumptions (from Hansen’s book):

" Combined with (24.19) we have three levels of asymptotic covariance matrices.

1. General: V, = Q;!Q,Q;!
2. Correct Specification: V¢ =1(1 -1)Q; ' QQ;!

T(1—-1)

1
fr(0)? Tz &

3. Quantile Independence: V? =

Advice: Always take as few assumptions as possible. T herefore,
go for the first expression, as it’'s valid under broad conditions unlike
the other two!



3. Estimation of the Variance-Covariance ma-
trix: some tips

By default, STATA greg doesn’t estimate V; (the general variance-
covariance matrix that allows for mispecification and is derived
under general conditions)

m Instead, it provides standard errors based on VTO, the var-cov
matrix under correct specification and quantile independence (see
Hansen).

m You should avoid the use of these standard errors (for iden-
tical reasons you should avoid homocedastic variance-covariance
matrices in OLS).

m If you use vce(robust): variance-covariance matrix that still
assumes correct specification but drops the quantile independence
assumption (V°).

m For a more general variance-covariance matrix estimate: use
Bootstrap



Estimation of the Variance-Covariance matrix: some
tips, II

Some tips to compute Bootstrap std. errors for QR regression

m STATA command:

bootstrap, reps(#): areg y x

m Number of replications should be large: at least 1000 (10,000
preferred!)

m Time consuming, only needs to be done for your final calcu-
lations (i.e., do intermediate regressions with less replications to
save time).



Bootstrap confidence intervals

m T wo ways of computing Bootstrap CI

a) Use bootstrap std.error and Normal quantile

b) Use percentiles of bootstrap distribution

m For obvious reasons the second way is better!
m However, this is not the STATA default

m 3 different ways of obtaining standard errors using bootstrap:

normal approximation, percentile approximation and BCA (bias
corrected and accelerated)



Method

How it is built

Pros & cons

Normal approximation
(bootstrap s.e.)

Percentile and Bca interval

3.

Resample the data B times;
compute 3(0).

Bootstrap s.e.

sboot = \/ o1 (B — B)2.

CL: B + Z1—a/2 Sboot-

Keep the B draws {3(?)}.

Lower limit = empirical a/2
quantile; upper = (1 — a/2).

BCa adds bias and acceleration
corrections.

Simple; default in bootstrap.

Assumes approx. normality. Skew/heavy
tails = mis-coverage (common in QR).

Uses the whole empirical distribution.

Adapts to skewness; often better
finite-sample coverage.

Slightly slower; not Stata’s default.




Bias—corrected & accelerated (BCa) bootstrap interval =
Let § be the statistic of interest and {»)}2  its B bootstrap
replicates.

B [ he basic percentile interval uses the empirical /2 and 1 —«a/2
quantiles of {§(V)}.

m If the bootstrap distribution is biased or skewed, coverage can
be poor.

m By correcting for bias (z9) and acceleration (a), BCa intervals
achieve much better finite-sample coverage than simple percentile
or normal-approximation intervals, especially when the estimator’s
sampling distribution is skewed.

m More details: Efron & Tibshirani, 1993



Bootstrap intervals in Stata

Default (normal) interval

bootstrap, reps(500) seed(123): qreg wage educ

Percentile interval

bootstrap, reps(500) seed(123) percentile : qreg wage educ
Bias—corrected & accelerated (BCa)

bootstrap, reps(500) seed(123): qreg wage educ
estat bootstrap, bca

e Rule of thumb: For quantile—regression coefficients—often
skewed— the percentile or BCa interval (right column, previ-
ous slide) is preferred to the normal-approximation interval.




Clustered Standard Errors

m Not implemented by greg

m Can be obtained in the bootstrap case:

bootstrap, reps(#) cluster(id): qreg y x

estat bootstrap.



STATA tip:

m Some of the QR built-in commands can be very slow, particu-
larly when bootstrap std. errors are computed.

m Alternative user-written package: IVQTE (Blaise Melly),

see here


https://sites.google.com/site/blaisemelly/home/computer-programs/estimation-of-quantile-treatment-effects-in-stata?authuser=0

Takeaways

QR estimator is consistent and asymptotically normal under
broad assumptions
m Use std. errors valid under broad assumptions

m In practice: use bootstrap standard errors

m To compute CI: use percentiles from the bootstrap distribution



4. Panel Data

m Also called longitudinal data.

m  Observations on the same entities (i) measured over multiple
time periods (t).

m Notation: Y, X with:=1,...,N,t=1,...,T.
Key Features & Advantages
m Combines cross—sectional and time—series variation = NT ob-

servations.

m Allows to control for time—invariant unobserved heterogeneity—
avoid omitted variable bias due to time-invariant factors.

m Allows to control for dynamics (lags) within units.



Quick Review: Linear Regression with panel data

ElYi | Xit, air] = Xi8 + .

m TThe term «;: individual effect, captures "unobserved hetero-
geneity”

m By introducing o; we control for unobserved time-invariant vari-
ables — avoids omitted variable bias (at least partially; it doesn’t
control for time varying unobserved individual heterogeneity)

Two alternative assumptions on «;:
1. X, and «; are uncorrelated: Random effects model.

2. X; and «; can be correlated: Fixed effects model.



By far, assumption (2) is much more realistic and general

B Why?

m Realistic: we should always suspect that omitted variables can
be correlated with the regressors (which is what creates the endo-
geneity problem in the first place!)

m General: (1) is just a particular case of (2).

In the following, we will consider that (2) holds



Quantile regression with panel data
We now consider quantile regression models for panel data

m  Main goal: (same as before) exploit the panel dimension of the
data, which allows to introduce fixed effects

A natural model to consider for the = quantile:

QT D/;t | Xita a’iT] — X{ﬁT + Qr-

m T hisis alinear model for the quantile = with an individual effect



How to estimate this model?

Recall:

m Fixed effect assumption: o;+ and X;; can be correlated.

Can we apply any of the techniques we typically employ in
standard panel regressions to get rid of «;?

m Recall that these methods are:

1. Remove the individual effect by the within transformation
(i.e., for each individual, subtract its mean, see section 17.8
in Hansen's book for details);

2. Remove the individual effect by first differencing;

3. Estimate a full regression model containing individual dummy
variables.



Panel data, II

Unfortunately, all of these methods fail when applied to quantile
regression panel data models!

Why?

m Methods (1) and (2) fail for the same reason: The quantile
operator Q- is not a linear operator:

=« The within transformation of Q.|Y;:|X;t,a;-| does not equal
Qr [ Zt|X’Lt7aZT] (Where Y;,t = Yt — zt)

= similarly AQ-|Yit| Xit, air] # Qr[AY5| X, vz .



Why Within— or First-Difference Transformations Fail in Quan-
tile Regression? Mean vs. Quantile

For means, linearity lets us subtract unit averages: .
Quantiles are not linear

e Quantiles respect monotone and constant shifts, but not ran-
dom shifts. That is

— Monotone transformation equivariance: Q,|g(Y)] =
9(Q-[Y]) if g is strictly increasing.

— Location equivariance for fixed constants: QY +
cl =Q-Y]+c¢ when cis a (non-random) constant.

e Within transform subtracts a random variable depending on
all Vs, s =1...T.

e [ herefore, demeaning the variables doesn’t get rid of o,



m Method (3) fails because of the incidental parameters problem:

« the number of parameters in the model (because of the indi-
vidual dummies) is proportional to the sample size

=« in this context, nonlinear estimators (including quantile re-
gression) are inconsistent.



Panel data, III

QR estimators for Panel data: several proposals to deal with
this issue, but none are particularly satisfactory.

m Canay (2011)'s method: has the advantage of simplicity and
wide applicability.

m Based on a simplification: the individual effect is common
across quantiles: o = «;.

m T hus «o; shifts the quantile regressions up and down uniformly.

m Under this assumption: we can write the quantile regression
model as

Yiie = XiB: + a; + e



Panel data, IV

Canay’s estimator takes the following steps:

1. Estimate a model for the conditional expectation using stan-
dard fixed effects panel data models, obtain &;

2. Estimate 8(7) by quantile regression of Y;; — &; on X;;.



How to do step 1:

m The key: the assumption that the fixed effect «; does not
vary across the quantiles 7, means that the fixed effects can be
estimated by the conventional within estimator.

m Then, use a fixed effect estimator for the conditional mean.
The model for the conditional mean would be

Yie = X;0 + o; + et

m more specifically: Estimate 6 by the within estimator and «; by
taking averages of Y;; — X ;0.



How to do step 2:

m After step 1, estimate 5. by quantile regression of Y;; — &; on
Xit.

m Primary disadvantage of this approach: the assumption that ¢;
does not vary across quantiles is restrictive.

m T his is a topic of active research



Stata Example: Canay Two-Step Estimator Step-by-Step Code]

x*Fixed-effects OLS
xtreg ln_wage tenure union, fe // within estimator
predict double alpha_hat, u // alpha_hat_i

*Demean outcome
generate double lnw_tilde = ln_wage - alpha_hat

*Pooled QR on transformed y (no constant)
foreach q in 0.25 0.50 0.75 A
greg lnw_tilde tenure union, q(q’) noconstant ///
vce(cluster idcode)
estimates store canayq’

¥

esttab canay2b canayb50 canay75, b se star compress



Notes
e Use noconstant because &; already absorbs unit shifts.
e Cluster SEs at the panel level.

e Consistent as N — oo with fixed T'.

More contributions: visit Blaise Melly website for recent con-
tributions (with STATA packages)

Melly and Pons (2023).


https://martinapons.github.io/files/MD.pdf

5. Censored data and QR

Censored data: a situation in which not all the values of the
distribution of the dependent variable are provided/observed, typ-
ically very small/large values are given in an interval

m Example:

=  wages. Frequently, high wages are grouped in one category,
i.e., wages> 100,000 a year (top-coded)

= Survival times after study ends.



Estimators of the mean (conditional mean) are not consistent:
we need all the distribution in order to compute expectations cor-
rectly (new estimators are needed, for instance Tobit models)

m However, this problem doesn’'t affect quantiles!

m If the data is censored above, all quantiles below the censor-
ing point are unaffected by the censoring.

m If the data is censored below, all quantiles above the censor-
ing point are unaffected by the censoring.



More formally:
Censoring implies:

m if the variable Y is top-coded, above a value ¢, we observe
Y* = min(y, c¢) instead of y.

m Then, using an idea by Powell (1986), we can exploit the fact
that ¢-(Y.*|X;) = min(X8-, c).

m IfY is left censored, same idea: ¢-(Y;*|X;) = max(X 8-, c).



Why Regular Quantile Regression Breaks Down

m Uncensored QR minimises the check loss p, for every observa-
tion.

m  With censoring (e.g. left-censor at c), many values Y; are re-
placed by c.

m T heir true rank in the latent distribution is unknown. m If you
feed these replaced values to QR, the optimisation " believes’ they

all lie at the same spot — severe bias, especially near the censoring
point.



Powell's Feasible-Set Insight Latent model

Y = X;rﬁ(T) +ui,  Qu(1) =0, Y; = max(c, Y;).

Core idea Keep only observations whose rank is unaffected by cen-
soring at the candidate (.
o Define F(B) = {i: Y;>cor X, <c}.
e On F(B) the sign of ¢; =Y; —XZ.TB matches the latent residual
sign.
e Minimise the check loss only over that set:

B; = arg mﬁin | Z pr(Yi — XZ—B)
i€F(B)



Hence, we estimate 3, as:

N
Br . = arg minz (1[Xb < ] pr(Y; — X[b) ). (1)
b =1

This is done through an iterative algorithm (Chernozhukov—Hong
2002 algorithm)



Example in STATA

// Install censored-quantile command (once per Stata setup)
ssc install cqiv, replace
help cqiv

Key syntax pattern

/// desired quantile

cqiv depvar indepvars, cq(#)
/// or rightcensor (#)

censor (censor_var) leftcensor (#)
vce(bootstrap, reps(200) seed(123))

e cq() — choose the quantile (0jil).
e censor(var) — 1 if uncensored, O if censored.
e leftcensor() oOr rightcensor() — cutoff value.

e Bootstrap SEs highly recommended.

Example 1: Left-Censored (Floored) Data Data: annual medical
Ccost cost with many zeros.



Create censoring indicator (1 = observed cost > 0)
gen byte uncensored = cost > 0O

Estimate 25th, 50th, 7b5th quantiles with bootstrap SEs
foreach q of numlist 0.25 0.50 0.75 {
cqiv cost income age chronic, cq(q’) ///
censor (uncensored) leftcensor(0) ///
vce(bootstrap, reps(300) seed(987))
est store Lcqrq’

}

Summarise side-by-side
esttab Lcqr2b5 Lcqrb50 Lcqr75, b se star compress

Interpretation tip: compare the income effect across quantiles to see how spending
distribution reacts at lower vs. upper tail.



6. Non parametric quantile regression

So far, we've assumed that quantile regression functions are linear
B \We know that this is a simplification, in many instances, an over simplification.

B Good news: Quantile regression functions may be estimated using standard
nonparametric methods.

B This is a large subject.

B The simplest way to go: consider series methods, which have the advantage
that they are easily implemented with conventional software.



Non parametric quantile regression, II

The nonparametric quantile regression model is

Y =9g,(X)+e

Qrle|X] =0

Idea of series regression: approximate the function gr(.) by a series regression
as the ones we saw in Handout 4.

For example,

Y =B0+ M1 X+ + B X" + ey

with Qq- [6k|X] ~ 0



For any k, the coefficients can be estimated by quantile regression.

B As in series regression the model order k should be selected to trade off flexibility
(bias reduction) and parsimony (variance reduction).

Caveat: how to select k in a given application?

B Unfortunately, standard information criterion (such as the AIC) do not apply for
quantile regression

B It is unclear if crossvalidation is an appropriate model selection technique.

B These questions are an important topic for future study.



An example (Hansen, p.796)

Y: log wage quantile regressions on a 5th order polynomial in experience.

4.0

Log Dollars per Hour
3.5

2.5

2.0

Labor Market Experience (Years)



There are two notable features.

B First, the 7 = .1 quantile function peaks at a low level of experience (about 10
years) and then declines substantially with experience.

B Second, even though this is in a logarithmic scale the gaps betwen the quantile
functions substantially widen with experience. This means that heterogeneity in
wages increases more than proportionately as experience increases.



7. Causality: Quantile Causal Effects

Key question: Can we interpret the results obtained in QR as causal?
We can partially answer this question in the treatment response framework

B We will provide conditions under which the quantile regression derivatives (i.e.,
the coefficients in the quantile regression) equal quantile treatment effects.



Treatment-Response model

Y isoutcome, X are controls and D is the treatment variable, U is an unobserved
structural random error.

B For concreteness: Y: wage, D: college education; U: (unobserved) ability

Y = h(D, X,U)

B For simplicity, D is binary: D =0 or 1.

Causal effect of the treatment

C(X,U) = h(1,X,U) — h(0,X,U).



In general, this effect is heterogeneous across individuals: we can study different
aspects of its distribution, in particular, mean and quantiles

B Average Treatment Effect: average of heterogeneous treatment effect, E[C(X,U)|X =
z]

B Quantile treatment effect is its 7th conditional quantile

0 (z) = ¢- [C(X,U)|X = al.

Interpretation of ¢*(xz): traces out the distribution of the causal effect across
the different quantiles

B Notice that it looks at the quantiles of the distribution of the causal effect
(=the difference between the cases D=1/D=0)



From observational data, we can estimate the quantile regression function (as
we've done up to now)

qgr(d,z) = q-|Y|D =d,X = x| = q.|h(D,X,U)|D =d, X = z]

B The estimated effect of D would be

D7 (X) = qr(1,2) — ¢+ (0, )

Key Question: Under what conditions D, (X) = ¢*(«x)

Notice the difference:

B D, (X): difference of conditional quantiles () of people with college and people
without college

B ¢*(x): quantile 7 of the effect of going to college.



The required conditions are (see Hansen p. 793):

Assumption 24.1 Conditions for Quantile Causal Effect

1. The error U is real valued.
2. The causal effect C(x, u) is monotonically increasing in u.
3. The treatment response h (D, X, u) is monotonically increasing in u.

4. Conditional on X the random variables D and U are independent.

T heorem:

Under Assumption 24.1, D, (X) = ¢¥(x)




To understand the theorem we need to understand the meaning of these con-
ditions, let's consider an example:

B Example: impact of college attendance on wages,;

: wages,

Y

D: college attendance;

U: innate ability (unobserved, not in the model).
X

- a bunch of control variables



Meaning of assumptions in 24.1
Assumption 24.1.1: excludes multi-dimensional unobserved heterogeneity.
Assumption 24.1.2 & Assumption 24.1.3: monotonicity assumptions

B Assumption 24.1.2 requires that the wage gain from attending college is
increasing in latent ability U (given X).

B Assumption 24.1.3 requires that wages are increasing in latent ability U
whether or not an individual attends college.



To see the role of these two assumptions, consider two individuals A and B, A
has higher ability than B. These two assumptions together require

m A’s gain from attending college exceeds B's gain.

m A receives a higher wage than B if they both are high school graduates AND
if they are both college graduates



More on assumptions

Assumption 24.1.4 is the traditional conditional independence assumption.

B This is a critical condition for causal inference:

By conditioning on a sufficiently rich set of variables X any correlation between D
and U has been eliminated.

B Under this condition, the probability of receiving the treatment (conditioning
on observables) doesn’'t depend on unobserved variables.

P(D =1|X,U) = P(D = 1|X)

B (But notice how stringent this assumption is, under this assumption, the prob-
ability of attending college doesn’'t depend on ability!)



It's clear that these conditions won't hold in many applications.

Solution: instrumental variables



Takeaways

Under the conditional independence and the monotonicity assumptions, the
quantile regression coefficients are the marginal causal effect of the treatment
variable D upon the distribution of Y

B The coefficients are not the marginal causal effects for specific individuals,
rather they are the causal effect for the distribution.

B As in the conditional mean case, these conditions can be very demanding

B For instance, in the example above, is it reasonable to expect that attending
college is unrelated to (unobserved) innate ability?

B What if they don’t hold?



The IV QR

As in the OLS case, endogeneity can be solved by using a good instrument(s)

Same idea: the instrument should verify an uncorrelatedness/independence
assumption

IV methods for quantile regressions, however, are not so simple, and are still
under development these days.

We'll focus on a particular case: estimation of treatment effects



IV estimation of Quantile Treatment Effects

(QTE)

A particular case:
m D (treatment) is binary and Z (instrument) is binary

B Under these assumptions, Abadie, Angrist and Imbens (2002) introduced an IV
estimator that is simple to implement:

B Quantile treatment effect estimator

B Their paper: "Instrumental Variables Estimates of the Effect of Subsidized
Training on the Quantiles of Trainee Earnings’, Econometrica 2002.



Quantile Treatment Effects Estimator: Framework

Similar assumptions as LATE framework for average causal effects.

B LATE: local average treatment effect
Setup:
B Binary treatment D
B Potential endogeneity due to omitted variables
B A binary instrument Z is available

M We can think of Z as initiating a causal chain: Z= D =Y



An example

Question: do the poorest workers benefit from a training program?
B Binary treatment: doing the training program or not.
B How is the treatment assigned: lottery

B However, participation is voluntary, so workers self-select themselves to treat-
ment.

B (Binary) instrument: being assigned to treatment by the lottery (intention to
treat).



To capture the idea that Z has a causal effect on D consider this notation:

Dq;: i's treatment status if Z; =1

and
Dg;: i's treatment status if Z;, =0

This framework partitions any population with an instrument into three sets of
instrument-dependent subpopulations.

m Compliers: D1; =1 and Dg; =0

m Always takers: Dy; =1 and Dg; =1

m Never takers: Dy; =0 and Dg; =0



To capture the idea that Z has a causal effect on D consider this notation:

Dq;: i's treatment status if Z; =1

and
Dg;: i's treatment status if Z;, =0

This framework partitions any population with an instrument into three sets of
instrument-dependent subpopulations.

m Compliers: D1; =1 and Dg; =0

m Always takers: Dy; =1 and Dg; =1

m Never takers: Dy; =0 and Dg; =0

(How about the “defiers”? —those that do the opposite that the treatment—
D1; =0 and Dg; =1

They are rule out!

Monotonity assumption: P(D; > Dg|X) =1.)



The “local’” nature of the QTE estimator:

B \We can only identify the effect of the treatment on the population of compliers.
Why?

B The instrument is not informative in the population of always takers or never
takers

B For these groups, the instrument is not a “source of exogeneous variation”, as
by definition treatment status for these two groups is unchanged by the instrument.

B The effect in the whole population might be different than the “local’ effect



Example:

Goal: estimating the effect of attending college on wages at different points in
the distribution.

B Problem: the decision of attending college is not random, potentially depends
on unobserved variables (e.qg., ability)

B We need an instrument that generates a group of compliers: give a (random)
subsidy

m  Compliers: those that attend college with the subsidy but wouldn't do it
without it.

m  Always takers: always go to college, regardless of the subsidy

m Never takers: never go to college, regardless of the subsidy



For obvious reasons, the use of the instrument will only provide us with infor-
mation in the complier subpopulation.

Notice that the effect in this subpopulation doesn’'t need to be the same as
that in the whole samplel



Framework, cont.

Potential outcomes framework. Potential outcome of individual 7, depending
on value of the treatment, D:

Yi;, if D;j=1

Yo;, it D; =0
The parameters of interest are defined as follows:
qr(Yi| X5, D;y, D1; > Do;) = a-D; + X[ B+, (17)

where:

s q-(Y;| X, D;, D1; > Dyg;): 7 quantile of Y; given X; and D; and conditional on
being a complier, Dy; > Dy;

m o, B+ quantile regression coefficients for compliers



Interpretation of a.:

B Recall that in the population of compliers (D1; > Dg;) and conditional on X, D
IS independent of potential outcomes.

B Why? the instrument Z is a source of exogenous variation in treatment status
in this group.

B Therefore, a,: Difference in the conditional-on-X quantiles of the treated (Y7;)
and non-treated (Yy;) for compliers (D1; > Dg;).

ar = qr (Y11 X, D1; > Dos) — qr (Yoi|Xi, D1; > Do;)



What o, is NOT measuring

1. This is not a comparison between individuals who effectively received the
treatment (for instance, attended college), and individuals who did not (i.e., un-
conditional distribution of Y). The results are conditional on X!

2. We're not estimating the conditional quantile of the individual treatment
effects: ¢-(Y1; — Yo;). Unlike in the conditional mean case the difference of quantiles
is not the quantile of the differencel

Let’s consider this last point a bit more:

B When estimating conditional expectations: the mean of the differences is the
differences of the means

B In quantiles: this is not true, the quantile of the difference is not the difference
of the quantiles!



B Therefore: we'll be comparing the (conditional) distribution of treated and the
distribution of not treated, we're not comparing individuals.

B As we saw in the previous section, we would need to impose strong conditions
so that these functions are the same (monotonicity conditions, which are related
to the rank invariance of a treatment).

B But typically knowing the difference of the quantiles is enough.

B \Why? consider a training program. For evaluation purposes it would be enough
if we observe that the people that took the program are better off.



The QTE Estimator

Key idea: Z is a source of exogenous variation (i.e., conditional on X it's
unrelated to U). Quantile regression coefficients can (theoretically) be estimated
by running QR in the population of compliers.

Problem: We do not observe whether an individual is a complier or not.

Solution: Let's look for the compliers. To do that, we'll use Abadie (2003)
“Kappa"” theorem to find them.



Main idea:

B I'dlike to estimate the effect of treatment by comparing treated and non treated
individuals in the complier population

B For thisI need to “find”’ the non-compliers and remove them from the compar-
ison group.

B The latter individuals are of two types:

m  Always takers

s  Never takers.

(recall that “defiers” are assumed to be zero)



Let's define an operator k; that " finds compliers’ .

B Di(l—ZZ') B (l—Di) Z;
1—PI‘(Z¢:1‘XZ') PI‘(ZrL'Zl ‘Xz)

Iiz‘:].

B Intuition:

m individuals with D;(1 — Z;) = 1 are always-takers as, for this term to be 1 then
D; =1 and Z; = 0.

= individuals with (1 — D;)Z; = 1 are never-takers, as 1— D; =1 (i.e., D; = 0)
and Z; = 1;

m  hence, the left-out are the compliers!

m Indeed, it can be checked that

Elk; | Y, Xs, D;] = Pr(D1; > Dos | Yi, X4, D;).



Abadie’s (2000) result:

B Let g(Y;, X;,D;) be any measurable function of (Y;, X;, D;) with finite expecta-
tion, and Z; be a binary instrument that satisfies the standard assumptions given
X,;, then:

Elg(Y;, Xi, D;) | D1; > Do;| = Elr
1

where:
B D;(1—2;) . (1-Dy)z
1-Pr(Z;, =1|X;) Pr(Zi=1|X;)

lﬁ:iEl



Given this result, Abadie, Angrist, and Imbens (2002) developed the QTE
estimator as the sample analogue of:

(ar,B7") = argmin E[p,(Y; —aD; — X[b) | D1; > Do;)) (2)
= arg migl Elkipr (Vi —aD; — X[b)] (3)

B To obtain the estimator, substitute expectation by sample mean.



Practical considerations

B k; needs to be estimated. The uncertainty in the estimation of this parameter
has an impact on the distribution of the estimators of the main parameter (o).

B Typically, bootstrap is employed ( including the estimation of x; in the boot-
strapping). Abadie et al. (2002) also provide the asymptotic distribution, but it's
less employed.

B To avoid non-convexities in the optimization process, in practice, expresion (4)
above is replaced by this one:

(at, B7") = argmin E[E(k;|Y;, D, X;)pr (Vi —aD; — Xb) (4)

a,

(which is obtained by iterating expectations in (4))



B A further simplification gives:

E[’{’I; | §/Z7XZ7DZ] —

- D;i(1-E[Z; | Y, Xi,D; =1])  (1—=Dy)E[Z; | Vi, X4, D; = 0] (6)
1—PI‘(ZfL:1‘XfL) 1—PI’(ZZ':1|XZ')

B this is the expression used in the QTE estimator



A very simple to implement the QTE estimator consists of the following two
steps:

1. Estimate E[k; | Yi, X;, D]

2. Perform quantile regression on p-(Y; —aD; — X[b) (e.g., with qreg) using these
predicted k's as weights.

How to estimate Elk; | Y;, X, D;]:
B See details in Mostly Harmless, p. 287

B It's done by running some probit regressions of a) Z; on Y; and X, for D=1 and
D=0, (separately)

b) A probit of Z;, on X; (whole sample)
B Construct E(k;|Y;, D;, X;) by replacing (a) and (b) in (6) above.

Fortunately, we can also do all this using a very recent STATA user-written
command



An example
From Abadie et al, 2003.

B Job Training partnership Act (JTPA): large federal program providing subsidized
training to disadvantaged american workers (randomly assigned)

B Effect of the program?

M Sample: 5102 adult mean with 30 month earnings data in the sample.
Key variables:

B Y, :earnings

B D,;: training received

B 7, randomly assigned offer of training program



Problem: some participants declined the intervention being offered (only 60%
of the potential participants accepted the training)

B Thus: treatment received (D) is not random! it's therefore partly self-selected
and likely to be correlated with potential individual characteristics, and then, po-
tential outcomes.

B Instrument: offer received to participating in the program

B Covariates: Since Z is truly random, covariates are not really needed to estimate
the effects on compliers. However, even in these type of situations it's customary
to control for other variables to correct for chance associations and to increase
precision.

B Following TAble: OLS and QR, (first panel), 2S5LS and QTE
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TaBLE 7.2.1
Quantile regression estimates and quantile treatment effects from th
experiment € JTpA
A, OLS and Quantile Regression Estimates
Quantile
Variable OLS 15 25 .50 75 %
Training effect 3,754 1,187 2,510 4,420 4,678 4.80
(336)  (205)  (356) (651  (937) (Loss
% Impact of training 21.2 135.6 75.2 34.5 17.2 134 )
High school or GED 4,015 339 1,280 3,665 6,045 6224
(571) (186) (305) (618)  (1,029) (1’170)
Black 2,354 —134 2500 —2,084 —3,576 —3.609
(@6 (194 (324)  (684)  (1087) (133
Hispanic 251 91 278 925 —877 —85
(883) (315 (512)  (1,066) (L769) (2,047)
Married 6,546 587 1,964 7,113 10,073 11,062
629) (222)  (427)  (839)  (L046) (1,093
Worked < 13 6582 —1,00 -3,097 ~7,610 9,834 -9,951
weeks in past year (566) (190) (339) (665) (1,000)  (1,099)
Constant 9,811 -216 365 6,110 14,874 21,527
(1,541)  (468) (765)  (1,403) (2,134) (3,896)
B. 2SLS and QTE Estimates
Quantile
Variable 2SLS 15 25 .50 .75 .85
Training effect 1,593 121 702 1,544 3,131 3,378
(895) (475) (670) (1,073) (1,376) (1,811)
% Impact of training 8.55 5.19 12.0 9.64 10.7 9.02
High school or GED 4,075 714 1,752 4,024 5,392 5,954
(573)  (429)  (644)  (940)  (1441) (1,783)
Black —2,349 -171 -377 -2,656 —4, 182 -3,523
(625)  (439)  (626)  (1,136) (1,587) (1,867)
Hispanic 335 328 1,476 1,499 379 1,023
(888) (757) (1,128) (1,390) (2,294) (2,427)
Married 6647 1,564 3,190 7,683 9,509 10,185
(627) (596) (865)  (1,202)  (1,430) (1,523)
Workefi <13 —6,575 —1,932 ~4,195 -7,009 -9,289 -9,078
weeks in past year (567)  (442)  (664)  (1,040) (1,420) (1,596)
Constant 10,641 —134 1,049 7,689 14,901 22,412
(1,569)  (1,116) (1,655) (2,361)  (3,292) (7,655)
2SLS, and QTE estimates of the

Notes: The table reports OLS, quantile regression,
effect of training on earnings (adapted from Abadie,
sample includes 5,102 adult men. Assignment status isused as an in
status in Panel B. In addition to the covariates shown in the table, all models in

Angrist, and Imbens, 2002). The
strument for training

clude

?ummles for service strategy recommended and age group, and a dummy indicating data
rom a second follow-up survey. Robust standard errors are reported in parentheses.



Evidence of positive selection (compare the OLS and 2SLS, for instance)

Very large effects for lower quantiles in QR but very low after instrumenting!

Effect is concentrated in the upper quantiles!



An example using STATA

Using geographic variation in college proximity to esti-
mate the return to schooling (Card, 1993)

Goal: impact of college attendance on wages
B Key variable: college attendance (dummy)

B Problem: it's endogeneous, (college attendance is correlated with unobserved
variables, for instance, ability, socio-economic status, etc).

B Instrument: college proximity

B Card showed that people (his sample only had men, in fact) who grew up in a
county/SMSA that had a 4-year college obtained on average about one-third of a
year more schooling than otherwise similar men who did not have a nearby college,
even controlling for background factors (parental education, etc).



B We will use the IVQTE package to compute the QTE estimator (but remember,

you can also compute it following the steps mentioned above using just probit and
areg!)

B Then, dep variable is log wages, indep. variable is college attendance, controls:
mother’'s education, experience, region and black (dummy)



Quantile regression (no instrumenting yet)

B \We can get the same estimates using qreg and ivagte! (no instrumenting yet).
Let's see that: qreg lwage college exper black motheduc reg662 reg663 reg664
regoo5 regb666

lwage | Coefficient Std. err. t P>|t| [95% conf. intervall
college .0787956 .0393212 2.00 0.045 .0016852 .155906
age .0405845 .0057545 7.05 0.000 .0292997 .0518692
black -.2602717 .0534961 -4.87 0.000 -.3651797 -.1553637
fatheduc -.0079807 .0063746 -1.25 0.211 -.0204816 .0045202
motheduc .0179566 .007538 2.38 0.017 .0031743 .0327389
reg662 .1183562 .0925071 1.28 0.201 -.063054 .2997663
reg663 .190697 .0912201 2.09 0.037 .0118107 .3695833
reg664 .0225945 .1064365 0.21 0.832 -.1861316 .2313207
reg665 .0177978 .0937132 0.19 0.849 -.1659776 .2015732
reg666 -.049373 .1053505 -0.47 0.639 -.2559694 .1572235
reg667 -.0109539 .0995215 -0.11 0.912 -.2061196 .1842118
reg668 .0037395 .1289615 0.03 0.977 -.2491591 .2566381
reg669 .0644794  .0997591 0.65 0.518 -.1311521 .2601109
_cons 4.488972 .2034505 22.06 0.000 4.089998 4.887947

. xthe same point estimates but different standard errors (consistent in case of heterosced
> asticity) are obtained with ivqte



ivqte Ilwage exper black motheduc regb662 regb663 regb64 regb65 regb66 regb67
reg668 reg669 (college), quantiles(0.1) variance

. ivqte lwage age black fatheduc motheduc reg662 reg663 reg664 reg665 reg666 reg667 reg668
> reg669 (college), q(0.1) variance

Quantile regression
Estimator suggested in Koenker and Bassett (1978)

Quantile: .1
DJependent variable: lwage
Regressor(s): college age black fatheduc motheduc reg662 reg663 reg664 reg66
> 5 regb666 reg667 reg668 reg669
\Number of observations: 2220
lwage | Coefficient Std. err. z P>|z| [95% conf. interval]
college .0787956 .0374622 2.10 0.035 .005371 .1522202
age .0405845 .0048544 8.36 0.000 .0310701 .0500989
black -.269386 .0470991 -5.72 0.000 -.3616986 -.1770733
fatheduc -.0079807 .0054604 -1.46 0.144 -.0186829 .0027215
motheduc .0179566 .0066357 2.71 o0.007 .0049508 .0309624
reg662 .1183562 .086721 1.36 0.172 -.0516139 .2883262
reg663 .190697 .0860994 2.21 0.027 .0219453 .3594487
reg664 .0225945 .0938826 0.24 0.810 -.161412 .2066011
reg665 .026912 .0836184 0.32 0.748 -.136977 .1908011
reg666 -.0402587 .1028796 -0.39 0.696 -.2418991 .1613816
reg667 -.0109539 .0865353 -0.13 0.899 -.1805599 .1586521
reg668 .0037395 .1178051 0.03 0.975 -.2271543 .2346333
reg669 .0644794 .0992441 0.65 0.516 -.1300354 .2589943
_cons 4.488972 .1560393 28.77 0.000 4.183141 4.794804




B Point estimates are exactly identical (because ivagte calls qreg) BUT the standard
errors differ

B Standard errors of ivqte are preferred, they are robust against heteroskedasticity
and other forms of dependence between the residuals and the regressors.

B Abadie, Angrist and Imbens estimator



. ivqte lwage (college=nearc4), q(0.1) variance dummy(black) continuous(age fatheduc mothed
> uc) unordered(region) aai

IV quantile regression
Estimator suggested in Abadie, Angrist and Imbens (2002)

Quantile(s): .1

Dependent variable: lwage

Treatment variable: college

Instrumental variable: nearc4

Control variable(s): age fatheduc motheduc black region
Number of observations: 2220

Proportion of compliers: .074

Propensity score estimated by local logit regression with h = infinity and lambda = 1
Positive weights estimated by local linear regression with h = infinity and lambda = 1
Variance estimated using local linear regression with h = infinity and lambda = 1

lwage | Coefficient Std. err. z P>|z| [95% conf. interval]
college .636274  .2713248 2.35 0.019 .1044873 1.168061
age .0670265 .0677152 0.99 0.322 -.0656929 .199746
fatheduc -.0005916 .0813788 -0.01 0.994 -.1600911 .1589079
motheduc .00345  .0693573 0.05 0.960 -.1324877 .1393877
black -.1726069 .6434898 -0.27 0.789 -1.433824 1.08861
region2 .8507937  .4571578 1.86 0.063 -.045219 1.746806
region3 .8496646 .4607969 1.84 0.065 -.0534808 1.75281
region4 .830908 .556047 1.49 0.135 -.2589242 1.92074
region5 .8543029 .762362 1.12 0.262 -.6398993 2.348505
region6 .7592364 1.216877 0.62 0.533 -1.625798 3.144271
region7 .7541343 1.049167 0.72 0.472 -1.302194 2.810463
region8 .4590159  .8000379 0.57 0.566 -1.109029 2.027061
region9 .8812575 .7842898 1.12 0.261 -.6559223 2.418437
_cons 2.67033 2.722238 0.98 0.327 -2.665159 8.005819




Takeaways

Using QR we can investigate the effects of covariates not only in the central
values of the distribution, but also in the tails on in any other point we might be
interested in

B All the aspects we studied in conditional mean estimation can be re-studied
here: very large literature!

B Still some unresolved issues, literature is still active in this area!



