Topics in Applied Econometrics for Public Policy

Master in Economics of Public Policy, BSE

Handout 4: Semiparametric Regression

Laura Mayoral

IAE and BSE

Barcelona, Spring 2025

1. Introduction

- Previous handouts: regression models without any structure.
- This gives a lot of flexibility but it also has some limitations:
- Sometimes, theory may place some structure on the data. We might want to incorporate this information in the model
- We can only include in the analysis a relative small set of variables (curse of dimensionality)
- ...but incorporating many variables might be needed to avoid endogeneity of regressors
- This lecture: Semiparametric methods

Semiparametric models: examples (from Cameron&Trivedi)

Many semiparametric models and many methods to estimate them. This is only a short intro to these methods.

Table 9.2. Semiparametric Models: Leading Examples

Name	Model	Parametric	Nonparametric
Partially linear	$E[y \mathbf{x},\mathbf{z}] = \mathbf{x}'\boldsymbol{\beta} + \lambda(\mathbf{z})$	$oldsymbol{eta}$	$\lambda(\cdot)$
Single index	$E[y \mathbf{x}] = g(\mathbf{x}'\boldsymbol{\beta})$	$\boldsymbol{\beta}$	$g(\cdot)$
Generalized partial linear	$E[y \mathbf{x},\mathbf{z}] = g(\mathbf{x}'\boldsymbol{\beta} + \lambda(\mathbf{z}))$	$\boldsymbol{\beta}$	$g(\cdot),\lambda(\cdot)$
Generalized additive	$\operatorname{E}[y \mathbf{x}] = c + \sum_{j=1}^{k} g_j(x_j)$	_	$g_{j}(\cdot)$
Partial additive	$E[y \mathbf{x},\mathbf{z}] = \mathbf{x}'\boldsymbol{\beta} + c + \sum_{j=1}^{k} g_j(z_j)$	$oldsymbol{eta}$	$g_j(\cdot)$
Projection pursuit	$E[y \mathbf{x}] = \sum_{j=1}^{M} g_j(\mathbf{x}_j' \overline{\beta}_j)$	$oldsymbol{eta}_i$	$g_j(\cdot)$
Heteroskedastic linear	$E[y \mathbf{x}] = \mathbf{x}'\boldsymbol{\beta}; V[y \mathbf{x}] = \sigma^2(\mathbf{x})$	$\mathring{m{eta}}$	$\sigma^2(\cdot)$

are identified. For example, see the discussion of single-index models. In addition to estimation of β , interest also lies in the marginal effects such as $\partial E[y|\mathbf{x},\mathbf{z}]/\partial \mathbf{x}$.

Roadmap

1. Partially Linear Models

2. Single Index Models

3. Summary, other models exist . . .

Partially Linear Model

Partially Linear Model: conditional mean is a linear regression function plus an unspecified nonlinear component.

$$E[y|x,z] = x\beta + \lambda(z)$$
 $\lambda(.)$ unspecified.

Model to be estimated:

$$y = x\beta + \lambda(z) + u, \quad E(u|x,z) = 0. \tag{1}$$

Estimation Method: Robinson Difference Estimator

We will obtain estimates for β and for λ in two steps

- **Step 1**: get rid of $\lambda(z)$ and estimate β (only)
- Step 2: Use the estimates of β in a model that will allow us to obtain an estimate for $\lambda(.)$

Robinson Difference Estimator

Step 1: A) get rid of $\lambda(.)$, B) estimate β

A) get rid of lambda:

Take conditional expectations (by z) on both sides of Model 1 (and notice that E(u|z)=0):

$$E[y|z] = E[x|z]'\beta + \lambda(z) \tag{2}$$

■ Subtract the two equations —eq (1) and eq (2)— and obtain the model:

$$y - E[y|z] = (x - E[x|z])'\beta + u$$
 (3)

The conditional moments E[y|z] and E[x|z] are unknown \Rightarrow Replace them by non parametric estimators \hat{m}_{y_i} and \hat{m}_{x_i}

- Robinson's difference estimator:
- Step 1: B) estimate β in the model

$$y - \hat{m}_{y_i} = (x - \hat{m}_{x_i})'\beta + u \tag{4}$$

The resulting estimator of β is consistent and A.N (assuming u is i.i.d.):

$$\sqrt{N}(\hat{\beta}_{PL} - \beta) \stackrel{d}{\to} N(0, \sigma^2 \left(\text{ plim } \frac{1}{N} \sum_{i=1}^{N} (x_i - E[x_i|z_i])(x_i - E(x_i|z_i)' \right)^{-1}$$

- Notes:
- 1. Cost of non-specifying λ ? higher variance (efficiency loss) [But no loss if E(x|z) is linear!]
- 2. The distribution assumes homokedasticity (u is i.i.d). Use Eicker-White standard errors to make it robust to heteroskedasticity
- 3. To estimate the variance: replace $(x_i E[x_i|z_i])$ by $(x_i \hat{m}_{x_i})$
- 4. How to compute \hat{m}_{x_i} and \hat{m}_{y_i} ?
- Robinson: Kernel estimates with convergence no slower than $N^{-1/4}$.

Step 2: Estimate λ

- Recall that $\lambda(z) = E(y|z) E(x|z)'\beta$.
- **E**stimate $\lambda(z)$ as

$$\hat{\lambda}(z) = \hat{m}_{y_i} - \hat{m}'_{x_i}\beta$$

Summarizing: Robinson difference estimator

- Model: $E[y_i|x_i,z_i]=x_i'eta+\lambda(z_i)$, unspeficied $\lambda(\cdot)$
- Steps:
- 1. Kernel regress y on z and get residual $y \hat{y}$.
- 2. Kernel regress x on z and get residual $x \hat{x}$.
- 3. OLS regress $y \hat{y}$ on $x \hat{x}$, get $\hat{\beta}$
- 4. Combine the estimates in 1) 2) and 3) to get $\hat{\lambda}(z) = \hat{m}_{y_i} \hat{m}'_{x_i}\hat{\beta}$

An example

■ Same data as before: now, wage on marital status and education.

Let's look first at the OLS:

regress lnhwage educatn married, vce(robust) noheader

lnhwage	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educatn	.1009005	.0219979	4.59	0.000	.0574834	.1443176
married	.4198385	.1545864	2.72	0.007	.1147326	.7249443
_cons	.6149712	.3219871	1.91	0.058	0205319	1.250474

- Robison's estimator:
- STATA command: semipar
- married enters linearly, we allow education to enter nonparametrically

semipar Inhwage married, nonpar(educatn) robust ci title("Partial linear")

with robust standard errors, confidence intervals...

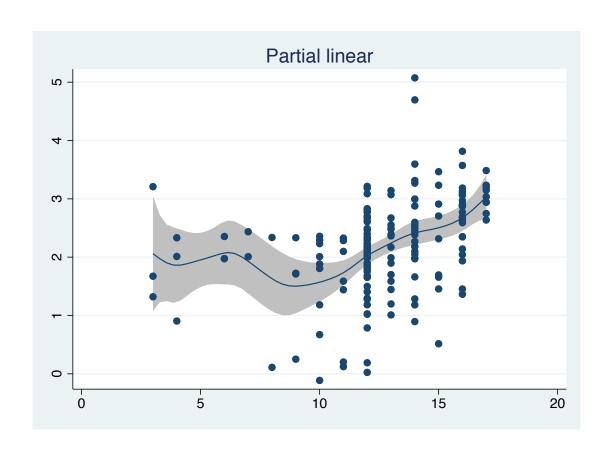
Output has two parts: 1) the parametric component

. semipar lnhwage married, nonpar(educat) robust ci title("Partial linear")

Number of obs = 177 R-squared = 0.0442 Adj R-squared = 0.0388 Root MSE = 0.7134

married	. 357994	.146041	2.45	0.015	.069777	. 646211
lnhwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]

 \blacksquare ...and the non-parametric component: Plot of $\lambda(z)$ against z where z is education



Trimming

- Trimming: we can apply trimming to estimate the nonparametric component.
- In kernel estimation: estimates are not good in areas of the support of z with low density values
- Why? low density=few values to compute the local average
- Trimming consists of excluding data points for which the density f(z) < b, for some positive value b
- the command semipar allows for the introduction of trimming (default is no trimming)

Summarizing

- Partially linear model: additive model with a parametric part and a non-parametric one
- Estimation: Robinson's two step estimator
- Stata: semipar
- Advantages of this method:
- The model allows "any" form of the unknown
- $\hat{\beta}$ is \sqrt{n} -consistent

Summarizing II

- These methods have been recently revisited in the machine learning literature (really cutting edge at the moment)
- Double machine learning, see Chernozhukov et al (AER, 2017)
- In a nutshell: same idea but estimate the conditional expectations needed in the procedure above using machine learning, instead of kernel regression
- Several advantages, in particular, avoid the curse of dimensionality
- If interested, check out this link for an easy introduction to the topic.

Back to binned scatter plots

- Recall that binned scatter plots are very popular and very useful visualization tools of the conditional expectation
- STATA Binscatter command (see handout 3), very popular but...
- problematic as well (for instance, controlling for additional variables).
- A recent paper improves considerably on this: On binscatter, Cataneo et al. (2024). STATA: binsreg

- Main features of the new binned scatter plots:
- Framework: partially linear model.

$$y_i = \mu(x_i) + w_i'\gamma + e_i$$

- we're insterested on the shape of the relationship between x and y, controlling for additional variables w.
- it provides ways of controlling (correctly!) for additional variables
- Optimal choice of the number of bins (i.e., number of quantiles of x plotted)
- Uncertainty quantification: confidence bands on the binscatter!
- Bottom line: in your applications, use the new binsreg command!

Single Index Models

Model:

$$E[y_i|x_i] = g(x_i'\beta)$$

where $g(\cdot)$ is not specified.

- Many standard nonlinear (parametric) models such as logit, probit, and Tobit are of single-index form. (In these cases g(.) is known)
- But we can also estimate this model leaving g(.) unspecified and estimate it non-parametrically.

- Advantages:
- Advantage 1: generalizes the linear regression model (which assumes g(.) is the identity function)
- Advantage 2: the curse of dimensionality is avoided as there is only one nonparametric dimension

Interpretation: marginal effects

For single-index models the effect on the conditional mean of a change in the jth regressor using calculus methods is

$$\frac{\partial E[y|x]}{\partial x_j} = g'(x'\beta)\beta_j,\tag{5}$$

where $g'(z) = \frac{\partial g(z)}{\partial z}$.

■ Then, relative effects of changes in regressors are given by the ratio of the coefficients since

$$\frac{\partial E[y|x]/\partial x_j}{\partial E[y|x]/\partial x_k} = \frac{\beta_j}{\beta_k},\tag{6}$$

because the common factor $g'(x'\beta)$ cancels.

Thus, if β_j is two times β_k , then a one-unit change in x_j has twice the effect as a one-unit change in x_k .

Estimation with unspecified g(.)

- Identification: β can only be identified up to location and scale
- lacktriangle That is, we estimate $a+b\beta_i$
- This is still useful to compute relative marginal effects!
- Ichimura semiparametric least squares: choose β and $g(\cdot)$ that minimizes

$$argmin_{\beta} \sum_{i=1}^{N} w(x_i)(y_i - \hat{g}(x_i'\beta))^2,$$

where $\hat{g}(.)$ is the leave-one-out NW estimator and $w(\cdot)$ is a trimming function that drops outlying x values.

- ullet eta can only be estimated up to scale in this model,
- but still useful as ratio of coefficients equals ratio of marginal effects in a single-index models.

Example

- Same data as before. Now: wages on hours worked and education
- STATA command: sls (Semiparametric Least Squares from Ichimura, 1993)
- Install it first:

ssc install sls

Run both ols and sls and compare results

lnhwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
hours	.0001365	.0000839	1.63	0.106	0000292	.0003022
educatn	.1071543	.0206339	5.19	0.000	.0664293	.1478793
_cons	.6437424	.3068995	2.10	0.037	.0380175	1.249467

. sls lnhwage hours educatn, trim(1,99)

initial: SSq(b) = 120.10723alternative: SSq(b) = 120.1062rescale: SSq(b) = 98.292016

SLS 0: SSq(b) = 98.292016 SLS 1: SSq(b) = 98.195246 SLS 2: SSq(b) = 98.007811 SLS 3: SSq(b) = 98.007526

SLS 4: SSq(b) = 98.007526

pilot bandwidth

1052.001873

SLS 0: SSq(b) = 99.252078 (not concave)

SLS 1: SSq(b) = 97.285143 SLS 2: SSq(b) = 97.202952 SLS 3: SSq(b) = 97.201992

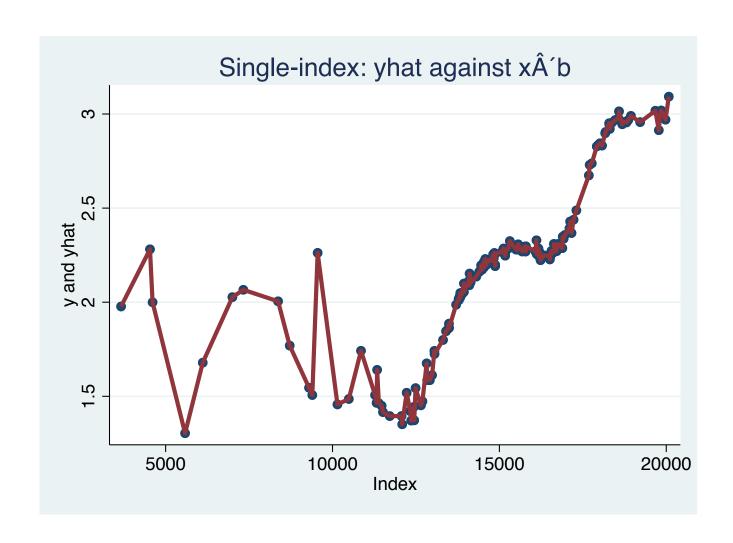
SLS 4: SSq(b) = 97.201988

Number of obs = **177** root MSE = **.741056**

lnhwage	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
Index educatn hours	1048.102 1	275.9987 (offset)	3.80	0.000	507.1545	1589.05

- Interpretation:
- one more year of education has the same effect on log hourly wage as working 1048 more hours a year!
- \blacksquare Compared to OLS, 0.1071453/0.0001365 = 785.

This graph plots the predicted conditional expectation versus $x'\beta$ (highly nonlinear)



Index models, summary

- \blacksquare Generalizes the linear regression model (which assumes g(.) constant)
- Gain over parametric models: more flexible
- Gain over fully non-parametric: only one nonparametric dimension (avoid curse of dimensionality).
- We only identified the parameters up to location and scale but
- The ratio of the coefficients provides the relative marginal effects

Takeaways

- Semiparametric methods aim to overcome some of the limitations of fully parametric and fully nonparametric methods
- Flexible, yet tractable (many variables can be included)
- Literature is very large
- Here, we've only presented a short introduction.
- Partial linear model, single index models ...but many more models are available
- See this document to learn about other semiparametric methods STATA can handle