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1. Introduction

Previous handout: nonparametric local weighted average esti-
mators.

m Several methods: NW (local constant), local linear, local poly-
nomial Lowess, K-NN, etc.

m Recall these are local average methods, (i.e., averages of the
dependent variable) where the weights employed are Kernel weights.

Now: a new class of nonparametric regression methods: non-
parametric series regression.

Goal: Same as before, estimate the conditional expectation.



Series Regression

Model: Consider two random variables (y,z) who are related
by,

y =m(z)+e (1)

where Ele|z] = 0 and Ele?|z] = o?(x).
Goal: estimate m(.), unspecified

Idea: approximate m(x) by a flexible function.

m We focus on linear functions (other possibilities also exist but
linear functions are simple and work well)

m In particular
= polynomials

= Splines



Series Regression, II

Linear series regression models take the form

y= X Bkx +ex (2)

m Wwhere Xy is a vector of regressors obtained by transforming x
in different ways

m (g is a coefficient vector.

We examine next two popular series regression estimators
m Polynomials

m Splines



Polynomial Regression

Conditional expectation:

m approximated by a polynomial in x of degree p:

mp(x) = Bo + Bix + Box® + - - + Bpal

m number of parameters to be estimated is K =p+1
Simple approach: estimate b, by OLS

m p:. controls the degree of flexibility of a polynomial regression.
Tradeoff

= A large p provides a lot of flexibility

= But it can become too noisy



Example
(from Hansen’'s book, chapter 20)

m Log wages on experience for women with college education
(education= 16), separately for white women and Black women
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Figure 20.1: Polynomial Estimates of Experience Profile, College-Educated Women



Difference between the two plots: might be due to the fact
that the sub-sample of Black women has much fewer observations

m T hen, the mean function is much less precisely estimated, giv-
ing rise to the erratic plots



Orthogonal polynomials

The different regressors (z!,z2,...,27...) can be highly corre-
lated

m Then the OLS estimator can be difficult to compute (as it
needs to invert a near-singular matrix)

One solution: orthogonalize the polinomial.

m Goal of orthogonal polynomials: get rid of the problem of the
inversion of X; X,

m How they work: they produce regressors that are close to being
orthogonal and have similar variances, which implies that the re-
sulting matrix of orthogonal regressors XZ’X;; is diagonal and with
similar diagonal values (the variances).

m T hen, use this vector of orthogonal regressors rather than X,.



m T here exist different ways of doing these orthogalizations, for

instance: 1) sample orthogonalization and) use orthogonal poly-
nomials

The most popular orthogonal polynomials are:
m Hermite polynomial, Laguerre Polynomial etc.

(See Hansen, chapter 20 for further details)



Implementation in STATA: npregress series

From STATA help:

npregress series: performs nonparametric series estimation

m Like linear regression, nonparametric regression models the mean
of the outcome conditional on covariates

m but unlike linear regression, it makes no assumptions about the

functional form of the relationship between the outcome and the
covariates.

m Output: average marginal effect



log wages on years of education.
stata command: npregress series Inhwage educatn, polynomial
m Output: average effect

m Polynomial order: chosen by cross-validation

Minimizing cross-validation criterion

Iteration @0: Cross-validation criterion = .6118535
Iteration 1: C(Cross-validation criterion = .5714533
Computing average derivatives
Polynomial-series estimation Number of obs = 177
Criterion: cross-validation Polynomial order = 3
Robust
lnhwage Effect std. err. z P>|z| [95% conf. intervall
educatn .1488311 .0195814 7.60 0.000 .1104523 .1872099

Note: Effect estimates are averages of derivatives.



Different output if regressor is continuous or discrete. Edu-
cation has 14 different values. Now we enter it in the model as
discrete

npregress series Inhwage i.educatn, polynomial

. npregress series lnhwage i.educatn, polynomial
Computing approximating function

Minimizing cross-validation criterion

Iteration @: Cross-validation criterion = .6576989

Computing average derivatives

Polynomial-series estimation Number of obs = 177
Criterion: cross-validation Polynomial order = 1
Robust

lnhwage Effect std. err. z P>|z]| [95% conf. intervall
educatn

(4 vs 3) -.43711 .5819696 -0.75 0.453 -1.57775 .7035295

(6 vs 3) .0336978 .504947 0.07 0.947 -.9559802 1.023376

(7 vs 3) -.0246969 .4939832 -0.05 0.960 -.9928862 .9434923

(8 vs 3) -1.022982 1.072799 -0.95 0.340 -3.125629 1.079666

(9 vs 3) -.6525539 .6075096 -1.07 0.283 -1.843251 .5381431

(10 vs 3) -.6353192 .5691324 -1.12 0.264 -1.750798 .4801598

(11 vs 3) -.7832856 .6340793 -1.24 0.217 -2.026058 .459487

(12 vs 3) -.0904436 .5003293 -0.18 0.857 -1.071071 .8901838

(13 vs 3) -.0444978 .515248 -0.09 0.931 -1.054365 .9653696

(14 vs 3) .3913532 .5309523 0.74 0.461 -.6492942 1.432001

(15 vs 3) .0298562 .5860523 0.05 0.959 -1.118785 1.178498

(16 vs 3) .5577673 .5102761 1.09 0.274 -.4423555 1.55789

(17 vs 3) .853556 .5015454 1.70 0.089 -.1294549 1.836567

Note: Effect estimates are averages of contrasts of factor covariates.



Estimated function at different data points

npregress series Inhwage educatn, polynomial margins, at(educatn=(4
56 7891011 1213 14 15 16 17)) marginsplot)

Adjusted predictions with 95% Cls
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Splines

A spline is a piecewise polynomial.

m Order of polynomial: pre-selected to be linear, quadratic, or
cubic.

m T he flexibility of the model: determined by the number of poly-
nomial segments.

m The join points between the segments are called knots.

= If there’s 1 knot, there are two segments, etc.



Splines, II

How to construct a spline?
m Choose p (order of the polynomial), typically p=1, 2 or 3
m A quadratic or cubic spline is useful when it is desired to
iImpose smoothness
m a linear spline is useful when it is desired to allow for sharp

changes in slope.

m Choose number of knots



Examples
Example 1: a linear spline with one knot 7:

(we allow the slope to change once)

mk(z) = Bo+ Bz + B2(z — 7)Lp>

Notice that;
« for z <7, mg(x) =B+ Biz is linear with slope B1;

)
« forax>7, mg(x) is linear with slope 81 + B2; and the function
IS continuous at x = .

= (9 is the change in the slope at .



Example 2: A linear spline with two knots 1 < 7 :

(The knots allow the slope to change twice)

mg(x) = Bo+ B1x+ Bo(x — m1)M(x > 1) + B3(x — o)1 (x > 12)

Example 3: quadratic spline with one knot is (we allow the
coefficient of z? to change once)

mp () = Bo + Brx + Box® + B3(x — 7)% - 1(x > 7)

In general, a pth-order spline with N knots 1 < o < --- < 7N IS

N+p—1

m(z) = Z Bjz? + Z Bp+k(® — 7)P - 1o > 7
J=



Important: select the number and location of knots.

m As usual, many options for doing this

m Simplest: evenly spaced



Example 1 (Hansen, Chapter 20)

Graph plots log wages on experience for Black women (394
obs.)

m quadratic spline (smooth changes)

m four equally-spaced knots at experience levels of 10, 20, 30,
and 40 (7 coefficients)

m For comparison: 6th order polynomial regression (also 7 coef-
ficients).
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Interpretation example 1:

m the spline is a quadratic over each segment, but the first two

segments (experience levels between 0-10 and 10-20 years) are
essentially linear.

m Most of the curvature occurs in the third and fourth segments
(20-30 and 30-40 years) where the estimated regression function
peaks and twists into a negative slope.

m T he estimated regression function is smooth.



Example 2 (Hansen, Chapter 20)

A model of altruistic transfers: transfers of extended family.
VS. income family.

m Model predicts that extended families will make gifts (trans-
fers) when the recipient family’s income is low, but will not make
transfers if the recipient family's income exceeds a threshold.

m A pure altruistic model predicts that the regression of transfers
received on family income should have a slope of 1 up to this
threshold and be flat above this threshold.

(sharp changes)

linear spline with knots at 10000, 20000, 50000, 100000, and
150000 pesos.



Transfers (Pesos)
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(b) Effect of Income on Transfers



Splines in STATA

npregress series Inhwage educatn, spline

Note: unless specified otherwise, cubic spline and number of knots
chosen by cross validation

In this example: cubic spline, 3 knots...how many parameters?

. npregress series lnhwage educatn, spline
warning: you have entered variable educatn as continuous but it only has 14 distinct values. The ¢
substantially if you inadvertently include a discrete variable as continuous

Computing approximating function

Minimizing cross-validation criterion

Iteration @: Cross-validation criterion = .5835807
Iteration 1: Cross-validation criterion = .5803272
Computing average derivatives
Cubic-spline estimation Number of obs = 177
Criterion: cross-validation Number of knots N 3
Robust
lnhwage Effect std. err. z P>|z| [95% conf. interval]
educatn .2100777 .0385008 5.46 0.000 .1346175 .2855378

Note: Effect estimates are averages of derivatives.



Conditional expectation at different points

margins, at(educatn=(4 5 6 7 8 9 10 11 12 13 14 15 16 17))
marginsplot

Adjusted predictions with 95% Cls
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Restrict to linear or quadratic spline to see the difference

(in both cases, 1 knot selected by CV)
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Asymptotic properties

Consistent (if K,N — 00)
Asymptotically normal
m Rate of convergence is v N

m But finite-samples biases still exist (the C.I. is not centered
correctly centered), similar case as in Kernel regression!

m the bias term can be made asymptotically negligible if we as-
sume that

K increases with N at a sufficiently fast rate.



The Global/Local Nature of Series Regression

Kernel regression as inherently local in nature.

m [ he Nadaraya-Watson, Local Linear, and Local Polynomial es-
timators estimate m(xzg) only considering z's close to xg.

In contrast, series regression is typically described as global in
nature: estimators are a function of the whole sample

m However, series regression estimators share the local smoothing
property of kernel regression:

m As the number of series terms K increases a series estimator
also becomes a local weighted average estimator.



Thus, another interpretation

= Both kernel and series regression are global in nature when h
is large (kernels) or K is small (series), and

= ...are local in nature when h is small (kernels) or K is large
(series).

m See Hansen, Chapter 20, for additional details



Takeaways
Two different ways of doing nonparametric regression
m Local averages

m T his handout: Flexible functions of the regressors:

m Splines
= Polynomials

m Very easy to implement, quicker rate of convergence



Additional References

In case you are interested in this topic, you can check the following
references:

For a textbook treatment of series regression: see Li and
Racine (2007).

For an advanced treatment see Chen (2007).

Two seminal contributions are Andrews (1991a) and Newey
(1997).

Recent contributions: Belloni, Chernozhukov, Chetverikov, and
Kato (2015) and Chen and Christensen (2015).



