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1. Introduction
Previous handout: nonparametric local weighted average esti-

mators.

Several methods: NW (local constant), local linear, local poly-
nomial Lowess, K-NN, etc.

Recall these are local average methods, (i.e., averages of the
dependent variable) where the weights employed are Kernel weights.

Now: a new class of nonparametric regression methods: non-
parametric series regression.

Goal: Same as before, estimate the conditional expectation.
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Series Regression
Model: Consider two random variables (y,x) who are related

by,

y = m(x) + e (1)

where E[e|x] = 0 and E[e2|x] = σ2(x).

Goal: estimate m(.), unspecified

Idea: approximate m(x) by a flexible function.

We focus on linear functions (other possibilities also exist but
linear functions are simple and work well)

In particular

polynomials

splines
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Series Regression, II
Linear series regression models take the form

y = X ′
KβK + eK (2)

where XK is a vector of regressors obtained by transforming x
in different ways

βK is a coefficient vector.

We examine next two popular series regression estimators

Polynomials

Splines
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Polynomial Regression
Conditional expectation:

approximated by a polynomial in x of degree p:

mK(x) = β0 + β1x+ β2x
2 + · · ·+ βpx

p

.

number of parameters to be estimated is K = p+ 1

Simple approach: estimate bk by OLS

p: controls the degree of flexibility of a polynomial regression.
Tradeoff

A large p provides a lot of flexibility

But it can become too noisy
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Example
(from Hansen’s book, chapter 20)

Log wages on experience for women with college education
(education= 16), separately for white women and Black women
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Difference between the two plots: might be due to the fact
that the sub-sample of Black women has much fewer observations

Then, the mean function is much less precisely estimated, giv-
ing rise to the erratic plots
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Orthogonal polynomials

The different regressors (x1,x2, . . . ,xj . . . ) can be highly corre-
lated

Then the OLS estimator can be difficult to compute (as it
needs to invert a near-singular matrix)

One solution: orthogonalize the polinomial.

Goal of orthogonal polynomials: get rid of the problem of the
inversion of X ′

kXk

How they work: they produce regressors that are close to being
orthogonal and have similar variances, which implies that the re-
sulting matrix of orthogonal regressors X∗

k
′X∗

k is diagonal and with
similar diagonal values (the variances).

Then, use this vector of orthogonal regressors rather than Xk.
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There exist different ways of doing these orthogalizations, for
instance: 1) sample orthogonalization and) use orthogonal poly-
nomials

The most popular orthogonal polynomials are:

Hermite polynomial, Laguerre Polynomial etc.

(See Hansen, chapter 20 for further details)
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Implementation in STATA: npregress series

From STATA help:

npregress series: performs nonparametric series estimation

Like linear regression, nonparametric regression models the mean
of the outcome conditional on covariates

but unlike linear regression, it makes no assumptions about the
functional form of the relationship between the outcome and the
covariates.

Output: average marginal effect
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log wages on years of education.

stata command: npregress series lnhwage educatn, polynomial

Output: average effect

Polynomial order: chosen by cross-validation
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Different output if regressor is continuous or discrete. Edu-
cation has 14 different values. Now we enter it in the model as
discrete

npregress series lnhwage i.educatn, polynomial
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Estimated function at different data points

npregress series lnhwage educatn, polynomial margins, at(educatn=(4
5 6 7 8 9 10 11 12 13 14 15 16 17)) marginsplot)
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Splines
A spline is a piecewise polynomial.

Order of polynomial: pre-selected to be linear, quadratic, or
cubic.

The flexibility of the model: determined by the number of poly-
nomial segments.

The join points between the segments are called knots.

If there’s 1 knot, there are two segments, etc.
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Splines, II
How to construct a spline?

Choose p (order of the polynomial), typically p=1, 2 or 3

A quadratic or cubic spline is useful when it is desired to
impose smoothness

a linear spline is useful when it is desired to allow for sharp
changes in slope.

Choose number of knots
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Examples

Example 1: a linear spline with one knot τ :

(we allow the slope to change once)

mK(x) = β0 + β1x+ β2(x− τ )1(x≥τ )

Notice that;

for x < τ , mK(x) = β0 + β1x is linear with slope β1;

for x ≥ τ , mK(x) is linear with slope β1 + β2; and the function
is continuous at x = τ .

β2 is the change in the slope at τ .
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Example 2: A linear spline with two knots τ1 < τ2 :

(The knots allow the slope to change twice)

mK(x) = β0 + β1x+ β2(x− τ1)1(x ≥ τ1) + β3(x− τ2)1(x ≥ τ2)

.

Example 3: quadratic spline with one knot is (we allow the
coefficient of x2 to change once)

mK(x) = β0 + β1x+ β2x
2 + β3(x− τ )2 · 1(x ≥ τ )

In general, a pth-order spline with N knots τ1 < τ2 < · · · < τN is

mK(x) =
N+p−1∑
j=0

βjx
j +

N∑
k=1

βp+k(x− τk)
p · 1x ≥ τk
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Important: select the number and location of knots.

As usual, many options for doing this

Simplest: evenly spaced
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Example 1 (Hansen, Chapter 20)
Graph plots log wages on experience for Black women (394

obs.)

quadratic spline (smooth changes)

four equally-spaced knots at experience levels of 10, 20, 30,
and 40 (7 coefficients)

For comparison: 6th order polynomial regression (also 7 coef-
ficients).
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Interpretation example 1:

the spline is a quadratic over each segment, but the first two
segments (experience levels between 0-10 and 10-20 years) are
essentially linear.

Most of the curvature occurs in the third and fourth segments
(20-30 and 30-40 years) where the estimated regression function
peaks and twists into a negative slope.

The estimated regression function is smooth.
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Example 2 (Hansen, Chapter 20)
A model of altruistic transfers: transfers of extended family.

vs. income family.

Model predicts that extended families will make gifts (trans-
fers) when the recipient family’s income is low, but will not make
transfers if the recipient family’s income exceeds a threshold.

A pure altruistic model predicts that the regression of transfers
received on family income should have a slope of 1 up to this
threshold and be flat above this threshold.

(sharp changes)

linear spline with knots at 10000, 20000, 50000, 100000, and
150000 pesos.
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Splines in STATA
npregress series lnhwage educatn, spline

Note: unless specified otherwise, cubic spline and number of knots
chosen by cross validation

In this example: cubic spline, 3 knots...how many parameters?
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Conditional expectation at different points

margins, at(educatn=(4 5 6 7 8 9 10 11 12 13 14 15 16 17))
marginsplot
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Restrict to linear or quadratic spline to see the difference

(in both cases, 1 knot selected by CV)
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Asymptotic properties

Consistent (if K,N → ∞)

Asymptotically normal

Rate of convergence is
√
N

But finite-samples biases still exist (the C.I. is not centered
correctly centered), similar case as in Kernel regression!

the bias term can be made asymptotically negligible if we as-
sume that

K increases with N at a sufficiently fast rate.
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The Global/Local Nature of Series Regression

Kernel regression as inherently local in nature.

The Nadaraya-Watson, Local Linear, and Local Polynomial es-
timators estimate m(x0) only considering x’s close to x0.

In contrast, series regression is typically described as global in
nature: estimators are a function of the whole sample

However, series regression estimators share the local smoothing
property of kernel regression:

As the number of series terms K increases a series estimator
also becomes a local weighted average estimator.
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Thus, another interpretation

Both kernel and series regression are global in nature when h
is large (kernels) or K is small (series), and

. . . are local in nature when h is small (kernels) or K is large
(series).

See Hansen, Chapter 20, for additional details
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Takeaways

Two different ways of doing nonparametric regression

Local averages

This handout: Flexible functions of the regressors:

Splines

Polynomials

Very easy to implement, quicker rate of convergence
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Additional References

In case you are interested in this topic, you can check the following
references:

For a textbook treatment of series regression: see Li and
Racine (2007).

For an advanced treatment see Chen (2007).

Two seminal contributions are Andrews (1991a) and Newey
(1997).

Recent contributions: Belloni, Chernozhukov, Chetverikov, and
Kato (2015) and Chen and Christensen (2015).
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