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Welcome!
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This course

Two sections

Section 1. Advanced topics in Econometrics: Non Parametric
Statistics and Quantile Regression

Section 2. Methods for Panel data (Lidia Farré)
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Today’s Goal

1. Overview of the contents of the course

2. Description of the overall logistics of the course.

3. Review of basic concepts (mostly for individual reading).
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1. Overview of the course

But, first: A quick summary of your econometrics se-
quence

So far, in your econometrics sequence:

Introduction to Econometric Analysis:

Linear models for the conditional mean. Estimation methods: OLS
and IV

Advanced Estimation methods:

Alternative estimation methods (ML, GMM, etc).
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Two common characteristics in previous courses:

Interest is typically placed on estimating the conditional mean:
E(y|X)

It’s typically assumed a particular DGP (=data generating pro-
cess)/model for the data. This is called Parametric Estimation.
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Why the conditional mean, why parametric estimation?

Why so much interest is placed on estimating the conditional
mean E(y|X)?

Response: Conditional expectation E(y|X) is the optimal∗ pre-
dictor of Y given X .

Optimal∗: best under specified conditions (=a particular loss
function)
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Conditional expectation as the optimal predictor:

Consider the problem: Given data on y and X, what is the
best forecast of y=g(X)? (i.e., what’s the best way of combining
information on X to produce the best predictor for y)

first, what is best?

best=”lowest mean squared error (MSE)”

MSE=mean squared error: average of the squared prediction
errors e, where e = ŷ− y
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Conditional expectation as the optimal predictor:

Consider the problem: Given data on y and X, what is the
best forecast of y=g(X)? (i.e., what’s the best way of combining
information on X to produce the best predictor for y)

first, what is best?

best=”lowest mean squared error (MSE)”

MSE=mean squared error: average of the squared prediction
errors e, where e = ŷ− y

solution: g(X) = E(y|X)
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About E(y|X):

In general, it’s a non-linear function of X.

But one ”magical” case: (y,X) jointly normal.
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About E(y|X):

In general, it’s a non-linear function of X.

But one ”magical” case: (y,X) jointly normal.

In this case: E(y|X) = Xβ

Then we estimate y = Xβ + ϵ under the key assumption that
E(ϵ|X) = 0
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This simple derivation gives us

1) a ”good” function of X to predict y: conditional expectation
(birth of our interest in this function)

2) the shape of this function (if normality): linear function (birth
of parametric modelling)
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Summarizing

These are the first bricks in the wall of regression analysis:

The best predictor of y given X is the conditional expectation

But “best” depends on the loss function employed. Other
loss functions will give other solutions different from the conditional
expectation.

If normality holds: the best prediction of y given X is just a
linear function of X.

But normality is a strong assumption in many scenarios. With-
out normality, linearity has to be interpreted as an approximation
to the true (nonlinear) conditional expectation, clearly sometimes
this can be a stretch.
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This course, I

We will depart from this framework in two directions

Direction I: Interest in estimation methods that are generally valid
under mild assumptions:

Imposing linearity and/or a specific distribution on the data are
strong assumptions
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This course, I

We will depart from this framework in two directions

Direction I: Interest in estimation methods that are generally valid
under mild assumptions:

Imposing linearity and/or a specific distribution on the data are
strong assumptions

Tradeoff between efficiency and validity:

Imposing assumptions that are correct leads to more efficient
estimators

Imposing assumptions that are not true leads to inconsistent
estimators
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Non parametric estimation

Departure point: in the vast majority of cases we don’t know
the ”true” model or the “true” distribution of the data.

Approach: We will look at methods that are valid under mild
assumptions (we will impose mild restrictions on the DGP )

→ Non-parametric (or semi-parametric) estimators.
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Direction II: Interest in other aspects of the distribution of the data

We will estimate other “quantities” different from the condi-
tional expectation

for instance, conditional median (rather than conditional mean)

more generally: conditional quantiles

Why?
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Why? At least three reasons

1. In some situations we can’t estimate the conditional mean.
For instance, if data are censored. However, we can estimate the
conditional median.

An example: you’re studying the effectiveness of a new drug on
extending the survival time of patients. 30% of the patients are
still alive when the study ends (right censoring). Average survival
time cannot be computed (you would need data on the whole
distribution), but median survival could.
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Why? At least three reasons

1. In some situations we can’t estimate the conditional mean.
For instance, if data are censored. However, we can estimate the
conditional median.

An example: you’re studying the effectiveness of a new drug on
extending the survival time of patients. 30% of the patients are
still alive when the study ends (right censoring). Average survival
time cannot be computed (you would need data on the whole
distribution), but median survival could.

2. The conditional mean ceases to be the ”best” predictor if one
changes the loss function.

An example: if instead of a quadratic loss function, an absolute
value loss function is employed, the conditional median becomes
the optimal predictor.
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3. The type of problem you’re interested in is key!

There are problems in economics that require to look at other
moments of the data: poverty, inequality, etc.

Examples:

Income Inequality and Economic Mobility: Quantile regression
can be used to explore how different factors influence the income
distribution at various levels. For example, it can assess how edu-
cation, demographic characteristics, or geographic location impact
not just the average income (mean) but the lower and upper tails
of the income distribution.

Economic Policy Evaluation: Quantile regression is particularly
useful in evaluating the effectiveness of policy interventions across
different sectors of the economy. For example, it can help as-
sess whether tax breaks or subsidies have different impacts on
low-income versus high-income households, thereby informing more
equitable policy designs.
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Housing Economics: When studying factors affecting housing
prices, quantile regression can help policymakers understand how
different variables, like location, size, or proximity to amenities,
affect various segments of the housing market. This method can
pinpoint if certain factors are driving up prices particularly in the
upper quartiles (luxury housing market) versus the lower quartiles
(affordable housing).

Impact of Education on Earnings: Traditional regression meth-
ods focus on the average effect of education on earnings. However,
quantile regression can show how this effect varies across different
income levels. For instance, it might reveal that obtaining a college
degree has a higher impact on earnings at the 90th percentile (high
earners) compared to the 10th percentile (low earners), suggesting
different returns to education across the income distribution.
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2. About logistics

The topics outlined above will keep us busy for the first 20
hours of this term.

5 hours a week: 4h with me and 1 h with the RA

Materials will be posted in Classroom

Website of the course:

http://mayoral.iae-csic.org/econometrics2025b/econometrics 2025.htm

Check the syllabus for information about grading, references,
etc.

Please check it regularly for updates.
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3. Review of Basic Concepts

The remaining of this document reviews three basic points that
will be used during this course.

This is very elementary material that by now you most likely
already master (otherwise, make sure you do by the end of this
week!).

A. Some basic probability concepts

B. Converge of random variables

C. Estimators and basic properties.

All of this is already known, but please read the notes carefully
to refresh these concepts, if needed.
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A. Some probability background
See: Greene (Appendix);

Definition of Probability

Consider an experiment that has various possible outcomes.

Each possible outcome is represented as a point in a set. Each of
these points are elementary events.

Other events can be formed by combining elementary events.

Sample space, Ω: the set that contains all elementary events.
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Definition of probability

Probabilities will be assigned to the elementary events accord-
ing to certain axioms.

Let Ω be the sample space, A be an event and P(.) is a proba-
bility assignment. The three axioms that define a probability are:

0≤ P (A) ≤ 1

P(Ω) = 1

If A1, A2, ... are disjoint events, then P(∪jAj) =
∑

j P (Aj)

0-24



Example

Consider the random experiment of throwing a dice.

Ω = {1, 2, 3, 4, 5, 6}.

Each of these elements are the elementary events.

Other events can be defined by combining elementary events.
A={1,2};

The probability of each of the elementary events is 1/6.

P (1∪ 2∪ 3∪ 4∪ 5∪ 6) = 1; P (A) = 2/6;
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Random variables

Definition: A random variable is a function from Ω to the real
numbers such that every element of Ω gets one real value.

Example

You are interested in the color of the eyes in a population.
The set of possible colors are {black, brown, green, blue}. A random
variable is the function that maps this set of events to numbers.

Let X be your random variable: “color of the eyes”.

X = {1, 2, 3, 4}. This means X = 1 if eyes are black, = 2 if brown,
etc.

The values of a random variable can be arbitrary (we could
define as well: X = {10, 20, 30, 40}.)
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Random variables and their realizations

A random variable is a function;

it represents all the possible outcomes of your random experi-
ment.

We can associate probabilities to each of these outcomes.

Realisation of a random variable: Once the random experiment
has taken place, we observe its realisation. This is not random
anymore.

We usually use capital letters to denote random variables (r.v.)
and small letters to denote particular realisations of these variables.

X=eye color; x = blue.
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Example

You are about to toss a coin. Ω = {heads, tails}; X = {0, 1}

Each of the values of X has an associated probability (if the
coin is balanced, 0.5)

Now you toss the coin, you get heads (X=0): this is a realisation
of X.

This realisation is not random anymore.
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Types of random variables
Discrete random variables

X is discrete if the number of distinct possible outcomes is
either finite or countably infinite.

For instance X = outcome after tossing a coin; Y = number of
times that one should toss a coin until the first tails appears.

The assignment of probabilities in this case is done via a function,
f (x) = P (X = x) , called the probability mass function (pmf ) , that
has the properties:

f (x) ≥ 0∑
i f (xi) = 1
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Continuous random variables

X takes values in an interval.

Examples: X: height of this class, unemployment rate, inflation
rate, etc.

The assignment of probabilities is done via the probability den-
sity function (pdf ) , f (x) , that has the properties:

f (x) ≥ 0∫
i f (xi) = 1

- If X is continuous, then P (X = x) = 0 for all x.

- P(a ≤ X ≤ b) =
∫ b
a f (x) dx.
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Distribution Function

The cumulative distribution function is defined as:

F (x) = P (X ≤ x) .

If X is discrete, then

F (xk) =

xk∑
i=x1

P (X = xi) ,

where x1 ≤ ... ≤ xk.

If X is continuous,

F (x) =

∫ x

−∞
f (x) dx.
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Moments of a univariate distribution

The shape of a probability distribution can be described with
the help of its moments

There are two types of moments:

µr = E (Xr) , is the rth raw moment

µ∗
r = E (X − µX)r is the rth central moment

Each of the moments provides some information about the distri-
bution of X. For instance µ1 is the mean, µ∗

2 is the variance.

Exercise

Find out what are the names of µ∗
3 and µ∗

4 and what aspects of
the distribution of X describe.
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Some important moments.

Expectations

The expected value of a random variable X, denoted as µ, is
the first uncentered moment.

It provides an idea of the central values of the distribution of
X.

Calculation.

E (X) = µX =

{ ∑
i xiP (X = xi), if X is discrete∫∞

−∞ xf (x) dx, if X is continuous
.
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Expected value of a function of X

In situations, we are interested in obtaining the mean of a
function of X. Let Z = g (X) , be a function of X, then

E (Z) = µZ =

{ ∑
i g(xi)P (X = xi), if X is discrete∫∞

−∞ g(x)f (x) dx, if X is continuous
.

Why is this?

Particular case: Expectation of a Linear transformation

If Z = a+ bX, then

E (Z) = a+ bE (X) . (1)

Because of the expression above, E(.) is called a linear operator
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Variance.

The variance of a distribution is a measure of dispersion with
respect to the expected value.

V ar (X) = σX = E (X −E (X))2 .

The variance is always larger than (or equal) to zero.

If V ar(X) = 0, then X is a number (has no variation).
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Standard deviation

Notice that the mean and the variance are not measured in the
same units.

Standard deviation: square root of the variance.

σ =
(
E
(
X2
)
−E (X)2

)1/2

The standard deviation is measured in the same units as the
expected value.
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Variance of a linear transformation of X

The variance is not a linear operator.

The variance of a linear function of X. is given by:

Let Z = a+ bX, then

V ar (Z) = b2V ar (X) .
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Joint distributions

Assume you have 2 different random experiments. It is possible
to assign probabilities to the outcomes of two experiments at the
same time.

Example: for a given population, we define two variables X=age;
Y = height. What is the probability that a person chosen at random
from this population is older than 20 and taller than 1:70m? i.e.,
P (X > 20,Y > 1.7)?

The joint distribution of X and Y will allow us to compute the
probability above.

We can also define the joint distribution of any group of vari-
ables. Let X =(X1, ...,Xn)′ denote a group of random variables.
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Joint distributions.

The joint distribution completely characterizes the vector of
random variables X.

If X is discrete, then f (x1, ...,xn) = P (X1 = x1, ...,Xn = xn) is
the joint probability mass function. It has to verify similar condi-
tions as the univariate pmf.

If X is continuous, then we can assign probability through
f (x1, ...,xn) , the joint probability density function. It has to satisfy
the conditions f (x1, ...,xn) ≥ 0 and∫ ∞

−∞

∫ ∞

−∞
f (x, y) dydx = 1.
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Covariance and correlation

The covariance between a pair of r.v. measures the degree of
linear association between them. It is defined as

Cov(X,Y ) = E ((X −E (X)) (Y −E (Y )))

Interpretation of this measure: we can only interpret the sign
of the covariance.

Cov(X,Y ) > 0 : there is a positive linear relation btw X,Y

Cov(X,Y ) = 0 : there is not a linear relation btw X,Y

Cov(X,Y ) < 0 : there is a negative relationship btw X,Y .

If Cov (X,Y ) = 0 it is said that X and Y and uncorrelated.
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Correlation

The covariance depends on the units of measurement of X and
Y and therefore the magnitude of the covariance is NOT informa-
tive about the strength of the linear association between X and
Y.

The correlation is a standardized version of the covariance. It
is bounded between [-1,1] and therefore not only the sign but also
the strength of the relationship can be assessed with it.

Corr(X,Y ) =
cov(X,Y )

σxσy
.
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Interpretation:

Corr(X,Y ) = 1 : the relation btw X, Y is positive

and perfectly linear

1 < Corr(X,Y ) < 0 : there a positive linear relation,

that is higher the higher corr is to 1

Cov(X,Y ) = 0 : X,Y are uncorrelated

0 < Corr(X,Y ) < −1 : there a negative linear relation,

that is higher the higher corr is to -1

Corr(X,Y ) = −1 : the relation btw X, Y is negative

and perfectly linear
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Covariance and correlation of linear transformations of
X and Y

If Z = a+ bX, V = c+ dY , then,

Cov (Z,V ) = bdCov (X,Y ) .

If Z = a+ bX, V = c+ dY , then

Corr (Z,V ) = Corr (X,Y ) .
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More properties of expectations, variances and correla-
tions

The following relationships are very important, you should re-
member them!

The expected value of a sum is the sum of expectations

E(α1X1+α2X2+, . . . ,αnXn+ c) = α1E(X1)+α2E(X2)+, . . . ,αnE(Xn)+ c

The variance of a sum is the sum of the variances if ONLY if
the variables are uncorrelated. General case:

V ar(α1X1+α2X2+ c) = α2
1V ar(X1)+α2

2V ar(X2)+ 2α1α2Cov(X1,X2)
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Covariance of a sum:

Cov(α1X1+α2X2+ c,α3X3+d) = α1α3Cov(X1,X3)+α2α3Cov(X2,X3)

Combining the last two expressions, you can find out more
expressions, for instance:

Variance of n variables

V ar(
n∑

i=1

Xi) =
n∑

i=1

V ar(Xi) +
n∑

i=1

n∑
j ̸=i

Cov(Xi,Xj)
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Marginal distributions

Consider a bivariate distribution, (X,Y ) with probability func-
tion f (x, y) .

From f (x, y) , it is possible to recover the distributions of X
and Y alone, i.e., distributions that do not depend on the other
variable.

These distributions are called marginal distributions.

If (X,Y ) are discrete: f (x) =
∑

y f (x, y) ; f (y) =
∑

x f (x, y) ;

If (X,Y ) are continuous: f (x) =
∫
y f (x, y) dy; f (y) =

∫
x f ((x, y) dx;
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Conditional distributions

Conditional distributions play a crucial role in econometrics.

Assume that the variables (X,Y ) are related and we have some
information about the variable X. Assume further that we have
observed that X = x. We would like to update the probability of Y
given the information available of X, that is, X = x.

Example: Suppose that we are studying Y=height, X=weight
of a population and that we have observed that the weight of a
person chosen at random is 55kg. Clearly, the probability of having
a particular height, say 1.90, given that we know that the person’s
weight is 55kg, would be different that the unconditional probability
of being 1.9.
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Conditional distributions

The distribution of Y conditional to X = x is defined as:

f (y|X = x) =
f (x, y)

f (x)
.

The conditional distribution f (y|X = x) is a probability function
and therefore, has to verify the same conditions as any p.d.f or
p.m.f (that is, is positive and has to add up –integrate– to 1).

f (y|X = x) is a function of X. That is, as X takes different
values, we would obtain different f (y|X = x)
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Independence

In this course we will be interested in how one variable responds
to the changes of a related variable.

However, it can be the case that a variable does not react to
the changes of some other variables because they are not related.

This lack of relationship is called independence.

The variables (X,Y ) are stochastically independent iff (if and
only if)

f (x, y) = f (x) f (y) .

Exercise: show that the latter result is equivalent to:

f (x|y) = f (x) and f (y|x) = f (y) .
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Independence vs uncorrelation

X, Y independent −→ X, Y uncorrelated

X, Y uncorrelated −→ X, Y not necessarily independent
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Independence implies the lack of any relationship between X
and Y and is a very strong condition.

It is a much stronger condition than lack of correlation.

Lack of correlation only means lack of linear relationship be-
tween X and Y. It can be the case that corr (X,Y ) = 0 but that X
and Y are not independent.

There is an important exception: if (X,Y )′ follow a normal
bivariate distribution and are uncorrelated, then they are also in-
dependent.
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The Normal distribution.

Univariate Normal distributions

Let X be a continuous r.v.

It follows a N
(
µ,σ2

)
distribution (a Normal distribution with

mean=µ and variance σ2 if its pdf is given by

f (x) =
1

√
2πσ2

e(x−µ)2/2σ2
.
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Standard Normal Distribution: N(0,1)

The Normal distribution is symmetric

To compute probabilities from a normal distribution: we use
the tables (corresponding to a standard normal distribution).

This distribution is very important in econometrics/statistics.

Many techniques assume normality

Many tests to check normality.

STATA hint: use qnorm to compare the quantiles of any vari-
able with those of a normal distribution.
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The Multivariate Normal distributions

Let (X,Y )′ be a pair of random variables.

They follow a bivariate normal distribution, denoted as,(
X
Y

)
∼ N

(
µ =

(
µx

µy

)
, Σ =

(
σ2
x σxy

σxy σ2
y

))
,

that is, a Normal distribution with vector of means µ and variance-
covariance matrix Σ if for any real vector λ,

λ′
(

X
Y

)

is a univariate normal distribution.
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Normal distributions are very important in statistics and econo-
metrics for two reasons:

They are very common (Central Limit Theorem).

They have very good properties and then it is very convenient
to work under the normality assumption.

In particular one of this good properties is if X and Y are mul-
tivariate normal

Y |X ∼ N(E (Y |X) , var(Y |X))

and E (Y |X) = a+ bX.

See Goldberger Chapter 7 for a description of the properties of
these distributions.
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B. Convergence of Random variables:
A quick review
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Key elements of asymptotic theory:

The meaning of convergence of random variables.

The most important convergence results

The Law of Large Numbers

The Central Limit Theorem.
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Convergence of random sequences

Consider a sequence of random variables: X1,X2, . . . ,Xn

A sequence of r.v. converges to a limit if for large values of n
the sequence and the limit are “close”.

But what does “close” mean when considering random vari-
ables?

Defining ’closeness’ in random variables is a bit more compli-
cated than in the deterministic case.

There are several ways to define “closeness”. We will look at
two: convergence in probability and convergence in distribution.
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Convergence in probability

Consider a sequence of random variables X1, . . . ,Xn or {Xi}ni=1.

Xn converges in probability to X, written Xn
p→ X, if for every

ε > 0

P (|Xn −X| > ε) → 0 as n → ∞

Convergence in probability looks at the values of the variables:
the probability that the distance between Xn and its limit is ”large”
tends to zero.
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Convergence in distribution

Consider a sequence of random variables X1, . . . ,Xn or {Xi}ni=1.

Xn converges in distribution to X, written Xn
d→ X, or Xn ⇒ X,

if for all x ∈ C, where C is the set of continuity points of the
distribution function FX (.) of X, then

lim
n→∞

FXn (x) = FX (x)
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Convergence in distribution

Consider a sequence of random variables X1, . . . ,Xn or {Xi}ni=1.

Xn converges in distribution to X, written Xn
d→ X, or Xn ⇒ X,

if for all x ∈ C, where C is the set of continuity points of the
distribution function FX (.) of X, then

lim
n→∞

FXn (x) = FX (x)

Convergence in distribution looks at the distribution of the vari-
ables, which should be very “close” (in the standard –deterministic–
sense, as they are not random) as n gets large.
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Notes:

The limit X can be a random variable or a constant.

if X is a constant, we say that the limit has a degenerate dis-
tribution (as all the probability mass is concentrated in one point)

The two modes of convergence are related. If Xn
p→ X, then

Xn
d→ X.

The opposite result is not true in general (unless X is a con-
stant).
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Order in probability: op(.) and Op(.)

Definition 1 (Convergence in probability to zero) Xn converges in

probability to zero, written Xn = op (1) or Xn
p→ 0, if for every ε > 0

P (|Xn| > ε) → 0 as n → ∞

Definition 2 (Boundedness in probability) The sequence {Xn} is
bounded in probability, denoted as Xn = Op (1) , if for every ε > 0
there exists δ(ε) ∈ (0,∞) such that

P (|Xn| > δ(ε)) < ε for all n

Clearly if Xt = op (1) , then Xt = Op (1).
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Some interesting results about probability orders

Definition 3 (Algebra of probability orders)

i) Xn = op (an) iff a−1
n Xn = op (1) ,

ii) Xn = Op (an) iff a−1
n Xn = Op (1) .

Exercise: True of false. β̂n is the OLS estimator of β under
the usual hypothesis.

a) β̂ = op(1)

0-64



Some interesting results about probability orders

Definition 3 (Algebra of probability orders)

i) Xn = op (an) iff a−1
n Xn = op (1) ,

ii) Xn = Op (an) iff a−1
n Xn = Op (1) .

Exercise: True of false. β̂n is the OLS estimator of β under
the usual hypothesis.

a) β̂ = op(1)

b) β̂ − β = op(1)
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Some interesting results about probability orders

Definition 3 (Algebra of probability orders)

i) Xn = op (an) iff a−1
n Xn = op (1) ,

ii) Xn = Op (an) iff a−1
n Xn = Op (1) .

Exercise: True of false. β̂n is the OLS estimator of β under
the usual hypothesis.

a) β̂ = op(1)

b) β̂ − β = op(1)

c) β̂ − β = Op(n.5)
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Some interesting results about probability orders

Definition 3 (Algebra of probability orders)

i) Xn = op (an) iff a−1
n Xn = op (1) ,

ii) Xn = Op (an) iff a−1
n Xn = Op (1) .

Exercise: True of false. β̂n is the OLS estimator of β under
the usual hypothesis.

a) β̂ = op(1)

b) β̂ − β = op(1)

c) β̂ − β = Op(n.5)

d) β̂ − β = op(n−.25)
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Some interesting results about probability orders

Definition 3 (Algebra of probability orders)

i) Xn = op (an) iff a−1
n Xn = op (1) ,

ii) Xn = Op (an) iff a−1
n Xn = Op (1) .

Exercise: True of false. β̂n is the OLS estimator of β under
the usual hypothesis.

a) β̂ = op(1)

b) β̂ − β = op(1)

c) β̂ − β = Op(n.5)

d) β̂ − β = op(n−.25)

e) β̂ − β = op(n−.5)
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Some interesting results about probability orders

Definition 3 (Algebra of probability orders)

i) Xn = op (an) iff a−1
n Xn = op (1) ,

ii) Xn = Op (an) iff a−1
n Xn = Op (1) .

Exercise: True of false. β̂n is the OLS estimator of β under
the usual hypothesis.

a) β̂ = op(1)

b) β̂ − β = op(1)

c) β̂ − β = Op(n.5)

d) β̂ − β = op(n−.25)

e) β̂ − β = op(n−.5)

f) β̂ − β = Op(n−.5)
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Proposition 1 If Xn and Yn, n=1, 2, ... are random variables
defined on the same probability space and an > 0, bn > 0, n = 1, 2, ...,
then

i) if Xn = op (an) and Yn = op (bn) , then XnYn = op (anbn) ; Xn+Yn =
op(max(an,bn)); |Xt|r = op (arn) , for r > 0

ii) if Xn = op (an) and Yn = Op (bn) , then XnYn = op (anbn)

iii) the statement (i) is valid if op (.) is replaced everywhere by Op (.)

Proposition 2 If {Xn} and {Yn} are two sequences of random k−
vectors such that Xn − Yn = op (1) and Xn

d→ X, then Yn
d→ X.
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Limit Theorems

”Winwood Reade is good upon the subject,” said Holmes. ”He
remarks that, while the individual man is an insoluble puzzle, in

the aggregate he becomes a mathematical certainty. You can, for
example, never foretell what any one man will do, but you can

say with precision what an average number will be up to.
Individuals vary, but percentages remain constant.”)

Sir Arthur Conan Doyle, “The sign of the four”
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Limit Theorems

The Law of Large Numbers and the Central Limit Theorem are
the most important results for computing the limits of sequences
of random variables.

There are many versions of LLN and CLT that differ on the
assumptions about the dependence of the variables.

Since we are assuming random sampling (=our data is i.i.d),
then we have enough with their simplest versions: LLN and CLT
for i.i.d. random variables.
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Law of Large Numbers for iid sequences

Let {Xi}ni=1 be an i.i.d sequence of random variables with finite
mean µ then

X̄n = n−1
n∑

i=1

Xi
p→ µ.

Proof. A very simple proof of this result can be provided if we
further assume that var(Xi) = σ2 < ∞. Then, by Chebychev’s in-
equality:

P

(∣∣∣∣∣n−1
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε)

)
≤ var(n−1

n∑
i=1

Xi)/ε2

= n−2
n∑

i=1

var(Xi)/ε2

=
nσ2

n2ε2
→ 0.
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What does this mean?

The STATA file handout2 LLN.do computes a small Monte
Carlo simulation that shows you that this theorem is actually true.
Run it so you can start experimenting with random numbers!

The file does the following:

1. Fix n=100. Generate n random numbers using a χ2 distribution
with one degree of freedom. Notice that E(Xi) = 1. Compute X̄n

and store this value.

2. Repeat this R=1000 times. This allows us to see the distribu-
tion of X̄100

3. Repeat 1. and 2. for different values of n = {500, 1000, 10000}.

4. Plot the obtained distributions corresponding to X̄100, X̄500,
X̄1000 and X̄10000.
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The LLN in practice

This is what you get . . . what do you observe?
0

10
20

30

.6 .8 1 1.2 1.4

N=1000 N=100
N=10000 N=500
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Central Limit theorem for i.i.d. sequences

Let {Xi}ni=1 be a sequence of i.i.d(µ, σ2) random variables.

Then

√
n(X̄n − µ)/σ d→ N(0, 1)
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The CLT in practice

Go to the following link to see an illustration of the CLT
https://demonstrations.wolfram.com/IllustratingTheCentralLimitTheoremWithSumsOfBernoulliRandomV/
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Takeaway
Asymptotic theory: tools to approximate the distribution of

(functions of) random variables.

Why? because in most cases we won’t be able to determine
the exact distribution of those variables.

We would compute limits of a sequence of random variables Xn

as gets approaches infinity

Two modes of convergence: in probability and in distribution

Two key results: CLT and LLN
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3. Estimators and basic properties
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3. Estimators and basic properties
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Estimators and basic properties

Remember that our goal is to be establish relationships among
variables.

Often, this relationship is captured by parameter(s) relating
those variables.

Example. Y=wages; X=years of education. Suppose that
these variables are related linearly, then

Yi = α+ βXi + ϵi

β is our parameter of interest.
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If the parameter is identified, we can gather data to obtain
an estimate of it and of its standard error (=a measure of the
uncertainty of our estimator).

An estimator is a function of the observable data that is used
to estimate an unknown population parameter.

An estimate is the result from the actual application of the
function to a particular dataset,

In general, many different estimators are possible for any given
parameter.
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Estimators are random variables, thus we can (should) compute
their associated distribution

An estimate is a realization of the corresponding estimator.
Thus, it is not random.

Let n be the size of the sample used in the computation of an
estimator of the parameter θ. Thus, for each sample size we can
define an estimator: θ̄n.

Let θ̂n be an estimator of the population parameter θ com-
puted with a sample of size n. Then, θ̂n is a function that maps
each sample S to its sample estimate θ̂n(S). The sequence {θ̂n}
is an example of a sequence of random variables, so the concepts
introduced above are applicable to {θ̂n}.

Different tools to obtain the limit of a sequence of estimators:
the LLN, the CLT; non-parametric estimation often requires addi-
tional tools.
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Properties of estimators

Some desirable properties of θ̂n are the following.

Consistency: θ̂n is consistent if θ̂n
p→ θ as n → ∞.

Related: The rate of convergence of θ̂n is nb if

nb(θ̂n − θ) = Op(1)

In parametric estimators the rate of convergence is n1/2

In non-parametric estimators it’s typically smaller.
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Unbiasedness: θ̂n is unbiased if E
(
θ̂n
)
= θ and is asymptotically

unbiased if limn→∞E
(
θ̂n
)
= θ.

Asymptotic Normality. A consistent estimator θ̂n is asymptot-

ically normal around the true parameter θ if
√
n(θ̂n − θ)

d→ N(0,V ),
where V is called the asymptotic variance of

√
n(θ̂n − θ).

Efficiency: An unbiased estimator θ̂n is efficient if it has the
lowest possible variance among all unbiased estimators.
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Takeaway
We are interested in the value of unknown parameters

We would use data and econometric techniques to figure out
the values of those parameters

Estimators (random variables) and estimates (the particular
value that an estimator gets when a particular dataset is employed).

Many possible estimators are available, How do we choose
among them?

We want estimators with good properties.

consistency, asymptotic normality, efficiency, unbiasedness. . .
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